1
|
Lancaster JN. Aging of lymphoid stromal architecture impacts immune responses. Semin Immunol 2023; 70:101817. [PMID: 37572552 PMCID: PMC10929705 DOI: 10.1016/j.smim.2023.101817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
The secondary lymphoid organs (SLOs) undergo structural changes with age, which correlates with diminishing immune responses against infectious disease. A growing body of research suggests that the aged tissue microenvironment can contribute to decreased immune function, independent of intrinsic changes to hematopoietic cells with age. Stromal cells impart structural integrity, facilitate fluid transport, and provide chemokine and cytokine signals that are essential for immune homeostasis. Mechanisms that drive SLO development have been described, but their roles in SLO maintenance with advanced age are unknown. Disorganization of the fibroblasts of the T cell and B cell zones may reduce the maintenance of naïve lymphocytes and delay immune activation. Reduced lymphatic transport efficiency with age can also delay the onset of the adaptive immune response. This review focuses on recent studies that describe age-associated changes to the stroma of the lymph nodes and spleen. We also review recent investigations into stromal cell biology, which include high-dimensional analysis of the stromal cell transcriptome and viscoelastic testing of lymph node mechanical properties, as they constitute an important framework for understanding aging of the lymphoid tissues.
Collapse
Affiliation(s)
- Jessica N Lancaster
- Department of Immunology, Mayo Clinic, 13400 E. Shea Blvd., Scottsdale, AZ, USA; Department of Cancer Biology, Mayo Clinic, 13400 E. Shea Blvd., Scottsdale, AZ, USA.
| |
Collapse
|
2
|
Hähnlein JS, Ramwadhdoebe TH, Semmelink JF, Choi IY, Berger FH, Maas M, Gerlag DM, Tak PP, Geijtenbeek TBH, van Baarsen LGM. Distinctive expression of T cell guiding molecules in human autoimmune lymph node stromal cells upon TLR3 triggering. Sci Rep 2018; 8:1736. [PMID: 29379035 PMCID: PMC5789053 DOI: 10.1038/s41598-018-19951-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/09/2018] [Indexed: 12/22/2022] Open
Abstract
Infections are implicated in autoimmunity. Autoantibodies are produced in lymphoid tissue where lymph node stromal cells (LNSCs) regulate lymphocyte function. Infections can alter the interaction between LNSCs and lymphocytes resulting in defective immune responses. In rheumatoid arthritis (RA) autoantibody production precedes clinical disease allowing identification of at risk individuals. We investigated the ability of human LNSCs derived from RA, RA-risk and healthy individuals to sense and respond to pathogens. Human LNSCs cultured directly from freshly collected lymph node biopsies expressed TLR1-9 with exception of TLR7. In all donors TLR3 triggering induced expression of ISGs, IL-6 and adhesion molecules like VCAM-1 and ICAM-1. Strikingly, T cell guiding chemokines CCL19 and IL-8 as well as the antiviral gene MxA were less induced upon TLR3 triggering in autoimmune LNSCs. This observed decrease, found already in LNSCs of RA-risk individuals, may lead to incorrect positioning of lymphocytes and aberrant immune responses during viral infections.
Collapse
Affiliation(s)
- Janine S Hähnlein
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tamara H Ramwadhdoebe
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Johanna F Semmelink
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ivy Y Choi
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ferco H Berger
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mario Maas
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Danielle M Gerlag
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Clinical Unit Cambridge, GlaxoSmithKline, Cambridge, UK
| | - Paul P Tak
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Ghent University, Ghent, Belgium
- University of Cambridge, Cambridge, UK
- GlaxoSmithKline, Stevenage, UK
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa G M van Baarsen
- Amsterdam Rheumatology & immunology Center (ARC), Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Abstract
The family of innate lymphoid cells (ILCs) has attracted attention in recent years as its members are important regulators of immunity, while they can also cause pathology. In both mouse and man, ILCs were initially discovered in developing lymph nodes as lymphoid tissue inducer (LTi) cells. These cells form the prototypic members of the ILC family and play a central role in the formation of secondary lymphoid organs (SLOs). In the absence of LTi cells, lymph nodes (LN) and Peyer's Patches (PP) fail to form in mice, although the splenic white pulp can develop normally. Besides LTi cells, the ILC family encompasses helper-like ILCs with functional distinctions as seen by T-helper cells, as well as cytotoxic natural killer (NK) cells. ILCs are still present in adult SLOs where they have been shown to play a role in lymphoid tissue regeneration. Furthermore, ILCs were implicated to interact with adaptive lymphocytes and influence the adaptive immune response. Here, we review the recent literature on the role of ILCs in secondary lymphoid tissue from the formation of SLOs to mature SLOs in adults, during homeostasis and pathology.
Collapse
Affiliation(s)
- Yotam E Bar-Ephraïm
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
4
|
A Reproducible Method for Isolation and In Vitro Culture of Functional Human Lymphoid Stromal Cells from Tonsils. PLoS One 2016; 11:e0167555. [PMID: 27907202 PMCID: PMC5132289 DOI: 10.1371/journal.pone.0167555] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022] Open
Abstract
The stromal compartment of secondary lymphoid organs is classicaly known for providing a mechanical scaffold for the complex interactions between hematopoietic cells during immune activation as well as for providing a niche which is favorable for survival of lymphocytes. In recent years, it became increasingly clear that these cells also play an active role during such a response. Currently, knowledge of the interactions between human lymphoid stroma and hematopoietic cells is still lacking and most insight is based on murine systems. Although methods to isolate stromal cells from tonsils have been reported, data on stability in culture, characterization, and functional properties are lacking. Here, we describe a reproducible and easy method for isolation and in vitro culture of functional human lymphoid stromal cells from palatine tonsils. The cells isolated express markers and characteristics of T cell zone fibroblastic reticular cells (FRCs) and react to inflammatory stimuli by upregulating inflammatory cytokines and chemokines as well as adhesion molecules, as previously described for mouse lymphoid stroma. Also, cultured tonsil stromal cells support survival of human innate lymphoid cells, showing that these stromal cells can function as bone fide FRCs, providing a favorable microenvironment for hematopoietic cells.
Collapse
|
5
|
Vo NTK, Bender AW, Ammendolia DA, Lumsden JS, Dixon B, Bols NC. Development of a walleye spleen stromal cell line sensitive to viral hemorrhagic septicemia virus (VHSV IVb) and to protection by synthetic dsRNA. FISH & SHELLFISH IMMUNOLOGY 2015; 45:83-93. [PMID: 25701636 DOI: 10.1016/j.fsi.2015.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
A cell line, WE-spleen6, has been developed from the stromal layer of primary spleen cell cultures. On conventional plastic, WE-spleen6 cells had a spindle-shaped morphology at low cell density but grew to become epithelial-like at confluency. On the commercial extracellular matrix (ECM), Matrigel, the cells remained spindle-shaped and formed lumen-like structures. WE-spleen6 cells had intermediate filament protein, vimentin and the ECM protein, collagen I, but not smooth muscle α-actin (SMA) and von Willebrand factor (vWF) and lacked alkaline phosphatase and phagocytic activities. WE-spleen6 was more susceptible to infection with VHSV IVb than a fibroblast and epithelial cell lines from the walleye caudal fin, WE-cfin11f and WE-cfin11e, respectively. Viral transcripts and proteins appeared earlier in WE-spleen6 cultures as did cytopathic effect (CPE) and significant virus production. The synthetic double-stranded RNA (dsRNA), polyinosinic: polycytidylic acid (pIC), induced the antiviral protein Mx in both cell lines. Treating WE-spleen6 cultures with pIC prior to infection with VHSV IVb inhibited the early accumulation of viral transcripts and proteins and delayed the appearance of CPE and significant viral production. Of particular note, pIC caused the disappearance of viral P protein 2 days post infection. WE-spleen6 should be useful for investigating the impact of VHSV IVb on hematopoietic organs and the actions of pIC on the rhabdovirus life cycle.
Collapse
Affiliation(s)
- Nguyen T K Vo
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Aaron W Bender
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | - John S Lumsden
- Ontario Veterinary College, Pathobiology, University of Guelph, Guelph, ON N2G 2W1, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
6
|
den Haan JM, Mebius RE, Kraal G. Stromal cells of the mouse spleen. Front Immunol 2012; 3:201. [PMID: 22807924 PMCID: PMC3395021 DOI: 10.3389/fimmu.2012.00201] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 06/28/2012] [Indexed: 11/28/2022] Open
Abstract
The composition and function of stromal cells in the white pulp of the spleen resemble to a large extent the situation in other secondary lymphoid organs such as lymph nodes. The stromal cells play an important role in the support and guidance of lymphocytes and myeloid cells in the T and B cell zones of the spleen. Major differences of the spleen are found in the way cells enter the white pulp and the composition of stromal cells in the red pulp. In this review, the features of stromal cells of both white and red pulp will be described in light of the function of the spleen.
Collapse
Affiliation(s)
- Joke M den Haan
- Department of Molecular Cell Biology and Immunology, VU University Medical Center , Amsterdam, Netherlands
| | | | | |
Collapse
|
7
|
Expression and function of interleukin-7 in secondary and tertiary lymphoid organs. Semin Immunol 2012; 24:175-89. [PMID: 22444422 DOI: 10.1016/j.smim.2012.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/06/2012] [Accepted: 02/15/2012] [Indexed: 12/23/2022]
Abstract
Interleukin-7 (IL-7) is known since many years as stromal-cell derived cytokine that plays a key role for the adaptive immune system. It promotes lymphocyte development in the bone marrow and thymus as well as naive and memory T cell homeostasis in the periphery. More recently, IL-7 reporter mice and other approaches have led to the further characterization of the various stromal cell sources of IL-7 in secondary lymphoid organs (SLO) and other tissues. We will review these advances along with a discussion of the regulation of IL-7 and its receptor, and compare the biological effects IL-7 has on adaptive as well as innate immune cells in SLO. Finally, we will review the role of IL-7 in development of SLO and tertiary lymphoid tissues that frequently are associated with sites of chronic inflammation.
Collapse
|
8
|
Siegert S, Huang HY, Yang CY, Scarpellino L, Carrie L, Essex S, Nelson PJ, Heikenwalder M, Acha-Orbea H, Buckley CD, Marsland BJ, Zehn D, Luther SA. Fibroblastic reticular cells from lymph nodes attenuate T cell expansion by producing nitric oxide. PLoS One 2011; 6:e27618. [PMID: 22110693 PMCID: PMC3215737 DOI: 10.1371/journal.pone.0027618] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/20/2011] [Indexed: 12/21/2022] Open
Abstract
Adaptive immune responses are initiated when T cells encounter antigen on dendritic cells (DC) in T zones of secondary lymphoid organs. T zones contain a 3-dimensional scaffold of fibroblastic reticular cells (FRC) but currently it is unclear how FRC influence T cell activation. Here we report that FRC lines and ex vivo FRC inhibit T cell proliferation but not differentiation. FRC share this feature with fibroblasts from non-lymphoid tissues as well as mesenchymal stromal cells. We identified FRC as strong source of nitric oxide (NO) thereby directly dampening T cell expansion as well as reducing the T cell priming capacity of DC. The expression of inducible nitric oxide synthase (iNOS) was up-regulated in a subset of FRC by both DC-signals as well as interferon-γ produced by primed CD8+ T cells. Importantly, iNOS expression was induced during viral infection in vivo in both LN FRC and DC. As a consequence, the primary T cell response was found to be exaggerated in Inos(-/-) mice. Our findings highlight that in addition to their established positive roles in T cell responses FRC and DC cooperate in a negative feedback loop to attenuate T cell expansion during acute inflammation.
Collapse
Affiliation(s)
- Stefanie Siegert
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Hsin-Ying Huang
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Chen-Ying Yang
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | - Lucie Carrie
- Swiss Vaccine Research Institute, and Centre Hospitalier Universitaire Vaudois (CHUV), Service of Immunology and Allergy, Lausanne, Switzerland
| | - Sarah Essex
- School of Immunity and Infection, Institute for Biomedical Research, Medical Research Council Center for Immune Regulation, University of Birmingham, Birmingham, United Kingdom
| | - Peter J. Nelson
- Medical Policlinic, Ludwig-Maximilians University/Helmholtz-Zentrum München, Munich, Germany
| | | | - Hans Acha-Orbea
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Christopher D. Buckley
- School of Immunity and Infection, Institute for Biomedical Research, Medical Research Council Center for Immune Regulation, University of Birmingham, Birmingham, United Kingdom
| | - Benjamin J. Marsland
- Service of Pneumology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Dietmar Zehn
- Swiss Vaccine Research Institute, and Centre Hospitalier Universitaire Vaudois (CHUV), Service of Immunology and Allergy, Lausanne, Switzerland
| | - Sanjiv A. Luther
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
- * E-mail:
| |
Collapse
|
9
|
Kim S, Han S, Withers DR, Gaspal F, Bae J, Baik S, Shin HC, Kim KS, Bekiaris V, Anderson G, Lane P, Kim MY. CD117⁺ CD3⁻ CD56⁻ OX40Lhigh cells express IL-22 and display an LTi phenotype in human secondary lymphoid tissues. Eur J Immunol 2011; 41:1563-72. [PMID: 21469096 DOI: 10.1002/eji.201040915] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 03/04/2011] [Accepted: 03/21/2011] [Indexed: 12/29/2022]
Abstract
Here, we identify cells within human adult secondary lymphoid tissues that are comparable in phenotype and location to the lymphoid tissue inducer (LTi) cells that persist in the adult mouse. Identified as CD117(+) CD3(-) CD56(-) cells, like murine LTi cells, they lack expression of many common lineage markers and express CD127, OX40L and TRANCE. These cells were detected at the interface between the B- and T- zones, as well as at the subcapsular sinus in LNs, the location where LTi cells reside in murine spleen and LNs. Furthermore, like murine LTi cells, these cells expressed high levels of IL-22 and upregulated IL-22 expression upon IL-23 stimulation. Importantly, these cells were not an NK cell subset since they showed no expression of IFN-γ and perforin. Interestingly, a subset of the CD117(+) CD3(-) CD56(-) OX40L(+) population expressed NKp46, again similar to recent findings in mice. Finally, these cells supported memory CD4(+) T-cell survival in an OX40L-dependent manner. Combined, these data indicate that the CD117(+) CD3(-) CD56(-) OX40L(+) cells in human secondary lymphoid tissues are comparable in phenotype, location and function to the LTi cells that persist within adult murine secondary lymphoid tissues.
Collapse
Affiliation(s)
- Soochan Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hou TZ, Bystrom J, Sherlock JP, Qureshi O, Parnell SM, Anderson G, Gilroy DW, Buckley CD. A distinct subset of podoplanin (gp38) expressing F4/80+ macrophages mediate phagocytosis and are induced following zymosan peritonitis. FEBS Lett 2010; 584:3955-61. [PMID: 20682314 DOI: 10.1016/j.febslet.2010.07.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/20/2010] [Accepted: 07/27/2010] [Indexed: 01/23/2023]
Abstract
Macrophages are important tissue resident cells that regulate the dynamics of inflammation. However, they are strikingly heterogeneous. During studies looking at podoplanin (gp38) expression on stromal cells in the murine spleen and peritoneal cavity we unexpectedly discovered that podoplanin was expressed on a subset of F4/80(+) macrophages; a subset which we have termed fibroblastic macrophages (FM). These cells function as phagocytes in vitro as measured by bead mediated phagocytosis assays. FM also exist at high frequency in the peritoneal cavity and in zymosan induced peritonitis in vivo. These FM represent a unique subgroup of F4/80(+) macrophages and their presence in the inflamed peritoneum suggests that they play a role in zymosan induced peritonitis.
Collapse
Affiliation(s)
- Tie Zheng Hou
- School of Immunity and Infection, MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|