1
|
Matos C, Renner K, Peuker A, Schoenhammer G, Schreiber L, Bruss C, Eder R, Bruns H, Flamann C, Hoffmann P, Gebhard C, Herr W, Rehli M, Peter K, Kreutz M. Physiological levels of 25-hydroxyvitamin D 3 induce a suppressive CD4 + T cell phenotype not reflected in the epigenetic landscape. Scand J Immunol 2022; 95:e13146. [PMID: 35073416 DOI: 10.1111/sji.13146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
1,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ), the active metabolite of vitamin D3 has a strong impact on the differentiation and function of immune cells. Here we analyzed the influence of its precursor 25-hydroxyvitamin D3 (25(OH)D3 ) on the differentiation of human CD4+ T cells applying physiological concentrations in vitro. Our data show that 25(OH)D3 is converted to its active form 1,25(OH)2 D3 by T cells, which in turn supports FOXP3, CD25 and CTLA-4 expression and inhibits IFN-γ production. These changes were not reflected in the demethylation of the respective promoters. Furthermore, we investigated the impact of vitamin D3 metabolites under induced Treg polarization conditions using TGF-β. Surprisingly, no additive effect but a decreased percentage of FOXP3 expressing cells was observed. However, the combination of 25(OH)D3 or 1,25(OH)2 D3 together with TGF-β further upregulated CD25 and CTLA-4 and significantly increased soluble CTLA-4 and IL-10 secretion whereas IFN-γ expression of iTreg was decreased. Our data suggest that physiological levels of 25(OH)D3 act as potent modulator of human CD4+ T cells and autocrine or paracrine production of 1,25(OH)2 D3 by T cells might be crucial for the local regulation of an adaptive immune response. However, since no epigenetic changes are detected by 25(OH)D3 a rather transient phenotype is induced.
Collapse
Affiliation(s)
- Carina Matos
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Alice Peuker
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Gabriele Schoenhammer
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Laura Schreiber
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Christina Bruss
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Ruediger Eder
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Germany
| | - Cindy Flamann
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Germany
| | - Petra Hoffmann
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany.,Regensburg Centre for Interventional Immunology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Claudia Gebhard
- Regensburg Centre for Interventional Immunology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Michael Rehli
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany.,Regensburg Centre for Interventional Immunology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Katrin Peter
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany.,Regensburg Centre for Interventional Immunology, University Hospital Regensburg, 93053, Regensburg, Germany
| |
Collapse
|
2
|
Nair VS, Song MH, Ko M, Oh KI. DNA Demethylation of the Foxp3 Enhancer Is Maintained through Modulation of Ten-Eleven-Translocation and DNA Methyltransferases. Mol Cells 2016; 39:888-897. [PMID: 27989104 PMCID: PMC5223106 DOI: 10.14348/molcells.2016.0276] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/24/2016] [Indexed: 01/25/2023] Open
Abstract
Stable expression of Foxp3 is ensured by demethylation of CpG motifs in the Foxp3 intronic element, the conserved non-coding sequence 2 (CNS2), which persists throughout the lifespan of regulatory T cells (Tregs). However, little is known about the mechanisms on how CNS2 demethylation is sustained. In this study, we found that Ten-Eleven-Translocation (Tet) DNA dioxygenase protects the CpG motifs of CNS2 from re-methylation by DNA methyltransferases (Dnmts) and prevents Tregs from losing Foxp3 expression under inflammatory conditions. Upon stimulation of Tregs by interleukin-6 (IL6), Dnmt1 was recruited to CNS2 and induced methylation, which was inhibited by Tet2 recruited by IL2. Tet2 prevented CNS2 re-methylation by not only the occupancy of the CNS2 locus but also by its enzymatic activity. These results show that the CNS2 methylation status is dynamically regulated by a balance between Tets and Dnmts which influences the expression of Foxp3 in Tregs.
Collapse
Affiliation(s)
- Varun Sasidharan Nair
- Department of Pathology, Hallym University College of Medicine, Chuncheon 24252,
Korea
| | - Mi Hye Song
- Department of Pathology, Hallym University College of Medicine, Chuncheon 24252,
Korea
| | - Myunggon Ko
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44949,
Korea
| | - Kwon Ik Oh
- Department of Pathology, Hallym University College of Medicine, Chuncheon 24252,
Korea
| |
Collapse
|
3
|
Sasidharan Nair V, Song MH, Oh KI. Vitamin C Facilitates Demethylation of the Foxp3 Enhancer in a Tet-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2016; 196:2119-31. [DOI: 10.4049/jimmunol.1502352] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/28/2015] [Indexed: 12/17/2022]
|
4
|
Müller M, Herrath J, Malmström V. IL-1R1 is expressed on both Helios(+) and Helios(-) FoxP3(+) CD4(+) T cells in the rheumatic joint. Clin Exp Immunol 2015; 182:90-100. [PMID: 26076982 DOI: 10.1111/cei.12668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2015] [Indexed: 01/22/2023] Open
Abstract
Synovial fluid from rheumatic joints displays a well-documented enrichment of forkhead box protein 3 (FoxP3)(+) regulatory T cells (tissue Tregs ). However, we have previously demonstrated that the mere frequency of FoxP3 expressing cells cannot predict suppressive function. Instead, extrinsic factors and the functional heterogeneity of FoxP3(+) Tregs complicate the picture. Here, we investigated FoxP3(+) Tregs from blood and synovial fluid of patients with rheumatic disease in relation to Helios expression by assessing phenotypes, proliferative potential and cytokine production by flow cytometry. Our aim was to investigate the discriminatory potential of Helios when studying FoxP3(+) Tregs in an inflammatory setting. We demonstrate that the majority of the synovial FoxP3(+) CD4(+) T cells in patients with inflammatory arthritis expressed Helios. Helios(+) FoxP3(+) Tregs displayed a classical Treg phenotype with regard to CD25 and cytotoxic T lymphocyte-associated antigen (CTLA)-4 expression and a demethylated Treg -specific demethylated region (TSDR). Furthermore, Helios(+) FoxP3(+) T cells were poor producers of the effector cytokines interferon (IFN)-γ and tumour necrosis factor (TNF), as well as of the anti-inflammatory cytokine interleukin (IL)-10. The less abundant Helios(-) FoxP3(+) T cell subset was also enriched significantly in the joint, displayed a overlapping phenotype to the double-positive Treg cells with regard to CTLA-4 expression, but differed by their ability to secrete IL-10, IFN-γ and TNF upon T cell receptor (TCR) cross-linking. We also demonstrate a striking enrichment of IL-1R1 expression in synovial CD4(+) T cells that was restricted to the CD25-expressing FoxP3 population, but independent of Helios. IL-1R1 expression appears to define a tissue Treg cell phenotype together with the expression of CD25, glucocorticoid-induced TNF receptor family-related gene (GITR) and CTLA-4.
Collapse
Affiliation(s)
- M Müller
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - J Herrath
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - V Malmström
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Pesenacker AM, Broady R, Levings MK. Control of tissue-localized immune responses by human regulatory T cells. Eur J Immunol 2014; 45:333-43. [PMID: 25378065 DOI: 10.1002/eji.201344205] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 09/30/2014] [Accepted: 10/31/2014] [Indexed: 12/25/2022]
Abstract
Treg cells control immune responses to self and nonharmful foreign antigens. Emerging data from animal models indicate that Treg cells function in both secondary lymphoid organs and tissues, and that these different microenvironments may contain specialized subsets of Treg cells with distinct mechanisms of action. The design of therapies for the restoration of tissue-localized immune homeostasis is dependent upon understanding how local immune responses are influenced by Treg cells in health versus disease. Here we review the current state of knowledge about human Treg cells in four locations: the skin, lung, intestine, and joint. Despite the distinct biology of these tissues, there are commonalities in the biology of their resident Treg cells, including phenotypic and functional differences from circulating Treg cells, and the presence of cytokine-producing (e.g. IL-17(+)) FOXP3(+) cells. We also highlight the challenges to studying tissue Treg cells in humans, and opportunities to use new technologies for the detailed analysis of Treg cells at the single-cell level. As emerging biological therapies are increasingly targeted toward tissue-specific effects, it is critical to understand their potential impact on local immune regulation.
Collapse
Affiliation(s)
- Anne M Pesenacker
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; Child & Family Research Institute, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
6
|
Mayer CT, Ghorbani P, Kühl AA, Stüve P, Hegemann M, Berod L, Gershwin ME, Sparwasser T. Few Foxp3⁺ regulatory T cells are sufficient to protect adult mice from lethal autoimmunity. Eur J Immunol 2014; 44:2990-3002. [PMID: 25042334 DOI: 10.1002/eji.201344315] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 06/03/2014] [Accepted: 07/11/2014] [Indexed: 12/12/2022]
Abstract
Foxp3 specifies the Treg cell lineage and is indispensable for immune tolerance. Accordingly, rare Foxp3 mutations cause lethal autoimmunity. The mechanisms precipitating more prevalent human autoimmune diseases are poorly understood, but involve a combination of genetic and environmental factors. Many autoimmune diseases associate with a partial Treg-cell dysfunction, yet mouse models reflecting such complex pathophysiological processes are rare. Around 95% of Foxp3(+) Treg cells can be specifically depleted in bacterial artifical chromosome (BAC)-transgenic Depletion of REGulatory T cells (DEREG) mice through diphtheria toxin (DT) treatment. However, Treg-cell depletion fails to cause autoimmunity in adult DEREG mice for unclear reasons. By crossing Foxp3(GFP) knock-in mice to DEREG mice, we introduced additional genetic susceptibility that does not affect untreated mice. Strikingly, DT treatment of DEREG × Foxp3(GFP) mice rapidly causes autoimmunity characterized by blepharitis, tissue damage, and autoantibody production. This inflammatory disease is associated with augmented T-cell activation, increased Th2 cytokine production and myeloproliferation, and is caused by defective Treg-cell homeostasis, preventing few DT-insensitive Treg cells from repopulating the niche after Treg-cell depletion. Our study provides important insights into self-tolerance. We further highlight DEREG × Foxp3(GFP) mice as a model to investigate the role of environmental factors in precipitating autoimmunity. This may help to better understand and treat human autoimmunity.
Collapse
Affiliation(s)
- Christian T Mayer
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Bending D, Pesenacker AM, Ursu S, Wu Q, Lom H, Thirugnanabalan B, Wedderburn LR. Hypomethylation at the regulatory T cell-specific demethylated region in CD25hi T cells is decoupled from FOXP3 expression at the inflamed site in childhood arthritis. THE JOURNAL OF IMMUNOLOGY 2014; 193:2699-708. [PMID: 25092890 PMCID: PMC4157061 DOI: 10.4049/jimmunol.1400599] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The maintenance of FOXP3 expression in CD25hi regulatory T cells (Tregs) is crucial to the control of inflammation and essential for successful Treg transfer therapies. Coexpression of CD25 and FOXP3 in combination with a hypomethylated region within the FOXP3 gene, called the Treg-specific demethylated region (TSDR), is considered the hallmark of stable Tregs. The TSDR is an epigenetic motif that is important for stable FOXP3 expression and is used as a biomarker to measure Treg lineage commitment. In this study, we report that, unlike in peripheral blood, CD4+ T cell expression of CD25 and FOXP3 is frequently dissociated at the inflamed site in patients with juvenile idiopathic arthritis, which led us to question the stability of human Tregs in chronic inflammatory environments. We describe a novel CD4+CD127loCD25hi human T cell population that exhibits extensive TSDR and promoter demethylation in the absence of stable FOXP3 expression. This population expresses high levels of CTLA-4 and can suppress T conventional cell proliferation in vitro. These data collectively suggest that this population may represent a chronically activated FOXP3lo Treg population. We show that these cells have defects in IL-2 signaling and reduced expression of a deubiquitinase important for FOXP3 stability. Clinically, the proportions of these cells within the CD25hi T cell subset are increased in patients with the more severe courses of disease. Our study demonstrates, therefore, that hypomethylation at the TSDR can be decoupled from FOXP3 expression in human T cells and that environment-specific breakdown in FOXP3 stability may compromise the resolution of inflammation in juvenile idiopathic arthritis.
Collapse
Affiliation(s)
- David Bending
- Infection, Inflammation and Rheumatology Section, University College London Institute of Child Health, London WC1N 1EH, United Kingdom; and
| | - Anne M Pesenacker
- Infection, Inflammation and Rheumatology Section, University College London Institute of Child Health, London WC1N 1EH, United Kingdom; and
| | - Simona Ursu
- Infection, Inflammation and Rheumatology Section, University College London Institute of Child Health, London WC1N 1EH, United Kingdom; and
| | - Qiong Wu
- Medical School, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hannah Lom
- Infection, Inflammation and Rheumatology Section, University College London Institute of Child Health, London WC1N 1EH, United Kingdom; and
| | - Balathas Thirugnanabalan
- Infection, Inflammation and Rheumatology Section, University College London Institute of Child Health, London WC1N 1EH, United Kingdom; and
| | - Lucy R Wedderburn
- Infection, Inflammation and Rheumatology Section, University College London Institute of Child Health, London WC1N 1EH, United Kingdom; and
| |
Collapse
|
8
|
Hansmann L, Schmidl C, Kett J, Steger L, Andreesen R, Hoffmann P, Rehli M, Edinger M. Dominant Th2 differentiation of human regulatory T cells upon loss of FOXP3 expression. THE JOURNAL OF IMMUNOLOGY 2011; 188:1275-82. [PMID: 22210907 DOI: 10.4049/jimmunol.1102288] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CD4(+)CD25(+)FOXP3(+) regulatory T cells (Treg) are pivotal for peripheral self-tolerance. They prevent immune responses to auto- and alloantigens and are thus under close scrutiny as cellular therapeutics for autoimmune diseases and the prevention or treatment of alloresponses after organ or stem cell transplantation. We previously showed that human Treg with a memory cell phenotype, but not those with a naive phenotype, rapidly downregulate expression of the lineage-defining transcription factor FOXP3 upon in vitro expansion. We now compared the transcriptomes of stable FOXP3(+) Treg and converted FOXP3(-) ex-Treg by applying a newly developed intranuclear staining protocol that permits the isolation of intact mRNA from fixed, permeabilized, and FACS-purified cell populations. Whole-genome microarray analysis revealed strong and selective upregulation of Th2 signature genes, including GATA-3, IL-4, IL-5, and IL-13, upon downregulation of FOXP3. Th2 differentiation of converted FOXP3(-) ex-Treg occurred even under nonpolarizing conditions and could not be prevented by IL-4 signaling blockade. Thus, our studies identify Th2 differentiation as the default developmental program of human Treg after downregulation of FOXP3.
Collapse
Affiliation(s)
- Leo Hansmann
- Department of Hematology and Oncology, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Schmidl C, Hansmann L, Andreesen R, Edinger M, Hoffmann P, Rehli M. Epigenetic reprogramming of the RORC locus during in vitro expansion is a distinctive feature of human memory but not naïve Treg. Eur J Immunol 2011; 41:1491-8. [PMID: 21469109 DOI: 10.1002/eji.201041067] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 01/03/2011] [Accepted: 01/28/2011] [Indexed: 12/17/2022]
Abstract
The adoptive transfer of in vitro expanded Treg is a promising treatment option for autoimmune as well as alloantigen-induced diseases. Yet, concerns about the phenotypic and functional stability of Tregs upon in vitro culture command both careful selection of the starting population and thorough characterization of the final cell product. Recently, a high degree of developmental plasticity has been described for murine Treg and Th17 cells. Similarly, IL-17-producing FOXP3(+) cells have been detected among the CD45RA(-) memory-type subpopulation of human Tregs ex vivo. This prompted us to investigate the predisposition of human naïve and memory Tregs to develop into Th17 cells during polyclonal in vitro expansion. Here, we show that stimulation-induced DNA demethylation of RORC, which encodes the lineage-defining transcription factor for Th17 cells, occurs selectively in CD45RA(-) memory-type Tregs, irrespective of their FOXP3 expression level. On the contrary, naïve CD45RA(+) Tregs retain stable CpG methylation across the RORC locus even upon prolonged ex vivo expansion and in consequence show only a marginal tendency to express RORC and develop into IL-17-producing cells. These findings are highly relevant for the generation of therapeutic Treg products.
Collapse
Affiliation(s)
- Christian Schmidl
- Department of Hematology & Oncology, University Hospital Regensburg, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Redpath M, Xu B, van Kempen LC, Spatz A. The dual role of the X-linked FoxP3 gene in human cancers. Mol Oncol 2011; 5:156-63. [PMID: 21489891 DOI: 10.1016/j.molonc.2011.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 03/11/2011] [Indexed: 01/18/2023] Open
Abstract
The FoxP3 (forkhead box P3) gene is an X-linked gene that is submitted to inactivation. It is an essential transcription factor in CD4(+)CD25(+)FoxP3 regulatory T cells, which are therapeutic targets in disseminated cutaneous melanoma. Moreover, FoxP3 is an important tumor suppressor gene in carcinomas and has putative cancer suppressor gene function in cutaneous melanoma as well. Therefore understanding the structure and function of the FoxP3 gene is crucial to gaining insight into the biology of melanoma to better develop immunotherapeutics and future therapeutic strategies.
Collapse
Affiliation(s)
- Margaret Redpath
- Department of Pathology, McGill University, Montreal, QC, Canada
| | | | | | | |
Collapse
|