1
|
Regulatory B and T lymphocytes in multiple sclerosis: friends or foes? AUTOIMMUNITY HIGHLIGHTS 2018; 9:9. [PMID: 30415321 PMCID: PMC6230324 DOI: 10.1007/s13317-018-0109-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Current clinical experience with immunomodulatory agents and monoclonal antibodies in principle has established the benefit of depleting lymphocytic populations in relapsing–remitting multiple sclerosis (RRMS). B and T cells may exert multiple pro-inflammatory actions, but also possess regulatory functions making their role in RRMS pathogenesis much more complex. There is no clear correlation of Tregs and Bregs with clinical features of the disease. Herein, we discuss the emerging data on regulatory T and B cell subset distributions in MS and their roles in the pathophysiology of MS and its murine model, experimental autoimmune encephalomyelitis (EAE). In addition, we summarize the immunomodulatory properties of certain MS therapeutic agents through their effect on such regulatory cell subsets and their relevance to clinical outcomes.
Collapse
|
2
|
Salehipour Z, Haghmorad D, Sankian M, Rastin M, Nosratabadi R, Soltan Dallal MM, Tabasi N, Khazaee M, Nasiraii LR, Mahmoudi M. Bifidobacterium animalis in combination with human origin of Lactobacillus plantarum ameliorate neuroinflammation in experimental model of multiple sclerosis by altering CD4+ T cell subset balance. Biomed Pharmacother 2017; 95:1535-1548. [PMID: 28946394 DOI: 10.1016/j.biopha.2017.08.117] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 08/27/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multiple Sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system (CNS). Recent reports have shown that probiotics can induce immunomodulatory activity with promising effects in inflammatory diseases. This study was designed to reveal the molecular and cellular mechanisms underlying the effect of Lactobacillus plantarum A7, which comprises human commensal bacteria, and Bifidobacterium animalis, a potential probiotic strain, on alleviation of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. METHODS To evaluate the therapeutic effects of probiotic strains, female C57BL/6 mice (8-10 wks old) received Lactobacillus plantarum A7, Bifidobacterium animalis PTCC 1631or a mixture of both strains through oral administration daily for 22days beginning simultaneous with induction of EAE. The clinical parameters were recorded daily. On Day 22, each mouse was bled, and their spinal cord was removed for histology analysis. The effects of the treatments on regulatory T (Treg) cells level were evaluated using flow cytometry, and T-cell proliferation was assessed using a BrdU incorporation assay. The supernatants of spleen and lymph nodes cultured and mononuclear cells were collected for quantification of different panel of pro and anti-inflammatory cytokines by ELISA. The analysis of gene expression was performed at RNA level for transcription factors by real-time PCR. RESULTS The results showed that treatment with a mixture of the two strains caused a more significant delay in the time of disease onset and clinical score compared to when the strains were used alone. The pathological features of the disease, such as mononuclear infiltration into the CNS, were also inhibited more significantly by the combinational approach. The results also revealed that treatment with combination of both strains enhanced the population of CD4+CD25+Foxp3+-expressing T-cells in the lymph nodes and the spleen. TREATMENT with our probiotic strains markedly inhibited disease associated cytokines while increased anti-inflammatory cytokines. Additionally, L. plantarumA7 and B. animalis ameliorated EAE condition by favoring Th2 and Treg differentiation via up-regulation of Foxp3 and GATA3 in the brain and spleen as well as inhibited the differentiation of Th1 and Th17 cells. CONCLUSIONS The current research provided evidence that probiotic therapy with L. plantarum and B. animalis can effectively attenuate EAE progression as well as reinforce the polarization of regulatory T-cells.
Collapse
Affiliation(s)
- Zohre Salehipour
- Immunology Research Center, Bu Ali Research Institute, School of Medicine; Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Mojtaba Sankian
- Immunology Research Center, Bu Ali Research Institute, School of Medicine; Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maryam Rastin
- Immunology Research Center, Bu Ali Research Institute, School of Medicine; Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Reza Nosratabadi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Immunology Department, Faculty of medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohammad Mehdi Soltan Dallal
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nafiseh Tabasi
- Immunology Research Center, Bu Ali Research Institute, School of Medicine; Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahdieh Khazaee
- Immunology Research Center, Bu Ali Research Institute, School of Medicine; Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Mahmoud Mahmoudi
- Immunology Research Center, Bu Ali Research Institute, School of Medicine; Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
O'Brien CA, Overall C, Konradt C, O'Hara Hall AC, Hayes NW, Wagage S, John B, Christian DA, Hunter CA, Harris TH. CD11c-Expressing Cells Affect Regulatory T Cell Behavior in the Meninges during Central Nervous System Infection. THE JOURNAL OF IMMUNOLOGY 2017; 198:4054-4061. [PMID: 28389591 DOI: 10.4049/jimmunol.1601581] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/14/2017] [Indexed: 01/17/2023]
Abstract
Regulatory T cells (Tregs) play an important role in the CNS during multiple infections, as well as autoimmune inflammation, but the behavior of this cell type in the CNS has not been explored. In mice, infection with Toxoplasma gondii leads to a Th1-polarized parasite-specific effector T cell response in the brain. Similarly, Tregs in the CNS during T. gondii infection are Th1 polarized, as exemplified by their T-bet, CXCR3, and IFN-γ expression. Unlike effector CD4+ T cells, an MHC class II tetramer reagent specific for T. gondii did not recognize Tregs isolated from the CNS. Likewise, TCR sequencing revealed minimal overlap in TCR sequence between effector T cells and Tregs in the CNS. Whereas effector T cells are found in the brain parenchyma where parasites are present, Tregs were restricted to the meninges and perivascular spaces. The use of intravital imaging revealed that activated CD4+ T cells within the meninges were highly migratory, whereas Tregs moved more slowly and were found in close association with CD11c+ cells. To test whether the behavior of Tregs in the meninges is influenced by interactions with CD11c+ cells, mice were treated with anti-LFA-1 Abs to reduce the number of CD11c+ cells in this space. The anti-LFA-1 treatment led to fewer contacts between Tregs and the remaining CD11c+ cells and increased the speed of Treg migration. These data suggest that Tregs are anatomically restricted within the CNS, and their interaction with CD11c+ populations regulates their local behavior during T. gondii infection.
Collapse
Affiliation(s)
- Carleigh A O'Brien
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908; and
| | - Christopher Overall
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908; and
| | - Christoph Konradt
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Aisling C O'Hara Hall
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Nikolas W Hayes
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908; and
| | - Sagie Wagage
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Beena John
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - David A Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Tajie H Harris
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908; and
| |
Collapse
|
4
|
Haghmorad D, Salehipour Z, Nosratabadi R, Rastin M, Kokhaei P, Mahmoudi MB, Amini AA, Mahmoudi M. Medium-dose estrogen ameliorates experimental autoimmune encephalomyelitis in ovariectomized mice. J Immunotoxicol 2016; 13:885-896. [PMID: 27602995 DOI: 10.1080/1547691x.2016.1223768] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Estrogen is a neuro-protective hormone in various central nervous system (CNS) disorders. The present study evaluated the role of estrogen during experimental autoimmune encephalomyelitis (EAE) at doses selected to mimic any suppressive potential from the hormone during pregnancy. Here, mice were ovariectomized and then 2 weeks later treated with MOG antigen to induce EAE. Concurrently, mice then received (subcutaneously) an implanted pellet to deliver varying estrogen amounts over a 21-day period. Clinical scores and other parameters were monitored daily for the 21 days. At the end of the period, brain/spinal cord histology was performed to measure lymphocyte infiltration; T-cell profiles were determined through ELISA, flow cytometry, and real-time PCR. Transcription factor expression levels in the CNS were assessed using real-time PCR; T-cell differentiation was evaluated via flow cytometry. The results demonstrated that estrogen inhibited development of EAE. Histological studies revealed limited leukocyte infiltration into the CNS. High and medium dose of estrogen increased TH2 and Treg cell production of interleukin (IL)-4, IL-10, and transforming growth factor (TGF)-β, but concurrently resulted in a significant reduction in production of interferon (IFN)-γ, IL-17, and IL-6. Flow cytometry revealed there were also significant decreases in the percentages of TH1 and TH17 cells, as well as significant increase in percentages of Treg and TH2 cells in the spleen and lymph nodes. Real-time PCR results indicated that high- and medium-dose estrogen treatments reduced T-bet and ROR-γt factor expression, but enhanced Foxp3 and GATA3 expression. Collectively, these results demonstrated that a medium dose of estrogen - similar to a pregnancy level of estrogen - could potentially reduce the incidence and severity of autoimmune EAE and possibly other autoimmune pathologies.
Collapse
Affiliation(s)
- Dariush Haghmorad
- a Department of Immunology, School of Medicine , Semnan University of Medical Sciences , Semnan , Iran
| | - Zohreh Salehipour
- b Department of Immunology and Allergy, School of Medicine, Immunology Research Center, BuAli Research Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Reza Nosratabadi
- c Immunology of Infectious Diseases Research Center , Rafsanjan University of Medical Sciences , Rafsanjan , Iran
| | - Maryam Rastin
- b Department of Immunology and Allergy, School of Medicine, Immunology Research Center, BuAli Research Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Parviz Kokhaei
- a Department of Immunology, School of Medicine , Semnan University of Medical Sciences , Semnan , Iran
| | | | - Abbas Ali Amini
- e Department of Immunology, Faculty of Medicine , Kurdistan University of Medical Sciences , Sanandaj , Iran
| | - Mahmoud Mahmoudi
- b Department of Immunology and Allergy, School of Medicine, Immunology Research Center, BuAli Research Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
5
|
Lam E, Choi SH, Pareek TK, Kim BG, Letterio JJ. Cyclin-dependent kinase 5 represses Foxp3 gene expression and Treg development through specific phosphorylation of Stat3 at Serine 727. Mol Immunol 2015. [PMID: 26198700 DOI: 10.1016/j.molimm.2015.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is known as a unique member of the cyclin-dependent family of serine/threonine kinases. Previously, we demonstrated Cdk5 to be an important regulator of T cell function and that disruption of Cdk5 expression ameliorates T cell mediated neuroinflammation. Here, we show a novel role of Cdk5 in the regulation of Foxp3 expression in murine CD4(+) T cells. Our data indicate that disruption of Cdk5 activity in T cells abrogates the IL-6 suppression of Foxp3 expression. This effect is achieved through Cdk5 phosphorylation of the signal transducer and activator of transcription 3 (Stat3) specifically at Serine 727 in T cells, and we show this post-translational modification is required for proper Stat3 DNA binding to the Foxp3 gene on the enhancer II region. Taken together, our data point to an essential role for Cdk5 in the differentiation of T cells as it regulates Foxp3 gene expression through phosphorylation of Stat3.
Collapse
Affiliation(s)
- Eric Lam
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University Hospitals Rainbow Babies & Children's Hospital Center, The Angie Fowler Adolescent & Young Adult Cancer Institute, United States; The Case Comprehensive Cancer Center, Case Western Reserve University, United States; Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Sung Hee Choi
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University Hospitals Rainbow Babies & Children's Hospital Center, The Angie Fowler Adolescent & Young Adult Cancer Institute, United States; The Case Comprehensive Cancer Center, Case Western Reserve University, United States
| | - Tej K Pareek
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University Hospitals Rainbow Babies & Children's Hospital Center, The Angie Fowler Adolescent & Young Adult Cancer Institute, United States; The Case Comprehensive Cancer Center, Case Western Reserve University, United States
| | - Byung-Gyu Kim
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University Hospitals Rainbow Babies & Children's Hospital Center, The Angie Fowler Adolescent & Young Adult Cancer Institute, United States; The Case Comprehensive Cancer Center, Case Western Reserve University, United States
| | - John J Letterio
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University Hospitals Rainbow Babies & Children's Hospital Center, The Angie Fowler Adolescent & Young Adult Cancer Institute, United States; The Case Comprehensive Cancer Center, Case Western Reserve University, United States; Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
6
|
Glatigny S, Duhen R, Arbelaez C, Kumari S, Bettelli E. Integrin alpha L controls the homing of regulatory T cells during CNS autoimmunity in the absence of integrin alpha 4. Sci Rep 2015; 5:7834. [PMID: 25592296 PMCID: PMC4296287 DOI: 10.1038/srep07834] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/12/2014] [Indexed: 12/23/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS), results from an autoimmune attack of the central nervous system (CNS) by effector T helper (Th) 1 and Th17 cells. Regulatory T cells (Treg) can control effector T cells and limit the progression of CNS autoimmunity. Integrin alpha 4 (Itga4) is critical for the entry of Th1 but not Th17 cells into the CNS during EAE. Whether Itga4 controls the homing of Tregs in the CNS and whether Tregs can limit Th17-mediated EAE has, however, not been addressed. Through selective elimination of Itga4 in Foxp3-expressing cells, we show here that Tregs can suppress Th17-mediated EAE and enter into the CNS independently of Itga4. Furthermore, similarly to Th17 cells and in contrast to Th1 cells, Tregs depend on LFA-1 for their entry into the CNS in the absence of Itga4. Therefore, these data suggest that the efficacy of Itga4 neutralization on MS progression may be associated with the prevention of Th1 cells and the maintenance of Tregs migration into the CNS.
Collapse
Affiliation(s)
- Simon Glatigny
- 1] Benaroya Research Institute, Immunology Program, Seattle WA 98101, USA [2] University of Washington, Department of Immunology, Seattle WA 98105, USA
| | - Rebekka Duhen
- 1] Benaroya Research Institute, Immunology Program, Seattle WA 98101, USA [2] University of Washington, Department of Immunology, Seattle WA 98105, USA
| | - Carlos Arbelaez
- 1] Benaroya Research Institute, Immunology Program, Seattle WA 98101, USA [2] University of Washington, Department of Immunology, Seattle WA 98105, USA
| | - Swarnima Kumari
- 1] Benaroya Research Institute, Immunology Program, Seattle WA 98101, USA [2] University of Washington, Department of Immunology, Seattle WA 98105, USA
| | - Estelle Bettelli
- 1] Benaroya Research Institute, Immunology Program, Seattle WA 98101, USA [2] University of Washington, Department of Immunology, Seattle WA 98105, USA
| |
Collapse
|
7
|
Fang J, Han D, Hong J, Zhang H, Ying Y, Tian Y, Zhang L, Lin J. SVα-MSH, a novel α-melanocyte stimulating hormone analog, ameliorates autoimmune encephalomyelitis through inhibiting autoreactive CD4(+) T cells activation. J Neuroimmunol 2014; 269:9-19. [PMID: 24518673 DOI: 10.1016/j.jneuroim.2014.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
Alpha-melanocyte stimulating hormone (α-MSH) plays a crucial role in the regulation of immune and inflammatory reactions. Here we report that SVα-MSH, a novel α-MSH analog, could ameliorate the clinical severity of experimental autoimmune encephalomyelitis (EAE) in a preventive and therapeutic manner. SVα-MSH treatment induced the production of regulatory T (Treg) cells and reduced the Th17 cells in the CNS of EAE mice. SVα-MSH-treated PLP peptide 139-151-specific T cells showed a down-regulation of T cell activation markers CD69 and CD134. SVα-MSH did not induce apoptosis but blocked the G1/S phase transition, reduced the expression of cyclin E, Cdk2 and the activity of NFAT and AP-1 transcription factors. Thus, SVα-MSH acts as a novel immunotherapeutic approach in the treatment of autoimmune attack on the CNS.
Collapse
Affiliation(s)
- Jie Fang
- Department of Dermatology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Deping Han
- Department of Central Laboratory, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China.
| | - Jinsheng Hong
- Department of Central Laboratory, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Hengshan Zhang
- Department of Central Laboratory, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Ying Ying
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Yeping Tian
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Lurong Zhang
- Department of Central Laboratory, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Jianhua Lin
- Department of Central Laboratory, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| |
Collapse
|
8
|
Yu L, Yang F, Jiang L, Chen Y, Wang K, Xu F, Wei Y, Cao X, Wang J, Cai Z. Exosomes with membrane-associated TGF-β1 from gene-modified dendritic cells inhibit murine EAE independently of MHC restriction. Eur J Immunol 2013; 43:2461-72. [PMID: 23716181 DOI: 10.1002/eji.201243295] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 05/09/2013] [Accepted: 05/24/2013] [Indexed: 11/10/2022]
Abstract
We have previously demonstrated that exosomes from dendritic cells (DCs) secreting TGF-β1 (sTGF-β1-EXOs) delay the development of murine inflammatory bowel disease (IBD). In this study, we isolated exosomes from DCs expressing membrane-associated TGF-β1 (mTGF-β1-EXOs) and found mTGF-β1-EXOs had more potent immunosuppressive activity than sTGF-β1-EXOs in vitro. Treatment of mice with mTGF-β1-EXOs inhibited the development and progression of myelin oligodendrocyte glycoprotein (MOG) peptide-induced EAE even after disease onset. Treatment of mice with mTGF-β1-EXOs also impaired Ag-specific Th1 and IL-17 responses, but promoted IL-10 responses ex vivo. Treatment with mTGF-β1-EXOs decreased the frequency of Th17 cells in EAE mice, which might be associated with the down-regulation of the p38, ERK, Stat3, and NF-κB activation and IL-6 expression in DCs. Treatment with mTGF-β1-EXOs maintained the regulatory capacity of Treg cells, and adoptive transfer of CD4(+)Foxp3(+)Treg cells from mTGF-β1-EXO-treated EAE mice dramatically prevented the development of EAE in the recipients. Moreover, treatment with mTGF-β1-EXOs from C57BL/6 mice effectively prevented and inhibited proteolipid protein (PLP) peptide-induced EAE in BALB/c mice. These results indicate that mTGF-β1-EXOs possess powerful immunosuppressive ability and can effectively inhibit the development and progression of EAE in different strains of mice.
Collapse
Affiliation(s)
- Lei Yu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Billetta R, Ghahramani N, Morrow O, Prakken B, de Jong H, Meschter C, Lanza P, Albani S. Epitope-specific immune tolerization ameliorates experimental autoimmune encephalomyelitis. Clin Immunol 2012; 145:94-101. [DOI: 10.1016/j.clim.2012.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 07/27/2012] [Accepted: 08/07/2012] [Indexed: 01/04/2023]
|
10
|
Immunoregulatory T cells in multiple sclerosis and the effect of interferon beta and glatiramer acetate treatment on T cell subpopulations. J Neurol Sci 2012; 319:18-23. [DOI: 10.1016/j.jns.2012.05.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/10/2012] [Accepted: 05/14/2012] [Indexed: 11/20/2022]
|
11
|
Shaw MK, Zhao XQ, Tse HY. Overcoming unresponsiveness in experimental autoimmune encephalomyelitis (EAE) resistant mouse strains by adoptive transfer and antigenic challenge. J Vis Exp 2012:e3778. [PMID: 22507967 DOI: 10.3791/3778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease of the central nervous system (CNS) and has been used as an animal model for study of the human demyelinating disease, multiple sclerosis (MS). EAE is characterized by pathologic infiltration of mononuclear cells into the CNS and by clinical manifestation of paralytic disease. Similar to MS, EAE is also under genetic control in that certain mouse strains are susceptible to disease induction while others are resistant. Typically, C57BL/6 (H-2(b)) mice immunized with myelin basic protein (MBP) fail to develop paralytic signs. This unresponsiveness is certainly not due to defects in antigen processing or antigen presentation of MBP, as an experimental protocol described here had been used to induce severe EAE in C57BL/6 mice as well as other reputed resistant mouse strains. In addition, encephalitogenic T cell clones from C57BL/6 and Balb/c mice reactive to MBP had been successfully isolated and propagated. The experimental protocol involves using a cellular adoptive transfer system in which MBP-primed (200 μg/mouse) C57BL/6 donor lymph node cells are isolated and cultured for five days with the antigen to expand the pool of MBP-specific T cells. At the end of the culture period, 50 million viable cells are transferred into naive syngeneic recipients through the tail vein. Recipient mice so treated normally do not develop EAE, thus reaffirming their resistant status, and they can remain normal indefinitely. Ten days post cell transfer, recipient mice are challenged with complete Freund adjuvant (CFA)-emulsified MBP in four sites in the flanks. Severe EAE starts to develop in these mice ten to fourteen days after challenge. Results showed that the induction of disease was antigenic specific as challenge with irrelevant antigens did not induce clinical signs of disease. Significantly, a titration of the antigen dose used to challenge the recipient mice showed that it could be as low as 5 μg/mouse. In addition, a kinetic study of the timing of antigenic challenge showed that challenge to induce disease was effective as early as 5 days post antigenic challenge and as long as over 445 days post antigenic challenge. These data strongly point toward the involvement of a "long-lived" T cell population in maintaining unresponsiveness. The involvement of regulatory T cells (Tregs) in this system is not defined.
Collapse
Affiliation(s)
- Michael K Shaw
- Department of Medicine, Section of Cardiology, St. John-Providence Health System
| | | | | |
Collapse
|
12
|
Dai H, Ciric B, Zhang GX, Rostami A. Interleukin-10 plays a crucial role in suppression of experimental autoimmune encephalomyelitis by Bowman-Birk inhibitor. J Neuroimmunol 2012; 245:1-7. [PMID: 22365083 DOI: 10.1016/j.jneuroim.2012.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/29/2011] [Accepted: 01/12/2012] [Indexed: 11/26/2022]
Abstract
The Bowman-Birk inhibitor (BBI) is a soybean-derived serine protease inhibitor with anti-inflammatory properties. Experimental autoimmune encephalomyelitis (EAE) serves as an animal model of the central nervous system (CNS) inflammatory disorder multiple sclerosis (MS). EAE is mediated by Th1 and Th17 cells which migrate into the CNS and initiate inflammation directed against myelin components, resulting in CNS pathology and neurological clinical deficit. We have shown previously that oral treatment with BBI delays onset of EAE and reduces its severity. These beneficial effects were associated with an increase in IL-10 secretion by immune cells of BBI-treated mice. It is not known, however, whether this was a causal relationship or simply an epiphenomenon. In the present study we provide evidence that BBI regulates CD4+ T cell immune responses in EAE. BBI administration delayed the onset of EAE and reduced its severity in an IL-10-dependent manner, as BBI-mediated suppression of EAE was abrogated in IL-10 knockout mice. The beneficial effects were accompanied by reduced IFN-γ, IL-17 and increased IL-10 production, as well as increased Foxp3 expression. CD4+ T cells were the major source of IL-10 in the periphery and in the CNS during BBI treatment. Furthermore, BBI-treated mice had reduced numbers of infiltrated cells in the CNS, including Th17 cells, as compared with PBS-treated control animals. In conclusion, our data provide clear evidence for the essential role of IL-10 in BBI-mediated suppression in EAE, and indicate that BBI may be a promising candidate for the development of a novel MS therapy.
Collapse
Affiliation(s)
- Hong Dai
- Department of Neurology, Thomas Jefferson University, Jefferson Hospital for Neuroscience, 900 Walnut Street, Suite 200, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|