1
|
Rees WD, Stahl M, Jacobson K, Bressler B, Sly LM, Vallance BA, Steiner TS. Enteroids Derived From Inflammatory Bowel Disease Patients Display Dysregulated Endoplasmic Reticulum Stress Pathways, Leading to Differential Inflammatory Responses and Dendritic Cell Maturation. J Crohns Colitis 2020; 14:948-961. [PMID: 31796949 DOI: 10.1093/ecco-jcc/jjz194] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Endoplasmic reticulum [ER] stress in intestinal epithelial cells [IECs] contributes to the pathogenesis of inflammatory bowel disease [IBD]. We hypothesized that ER stress changes innate signalling in human IECs, augmenting toll-like receptor [TLR] responses and inducing pro-inflammatory changes in underlying dendritic cells [DCs]. METHODS Caco-2 cells and primary human colon-derived enteroid monolayers were exposed to ATP [control stressor] or thapsigargin [Tg] [ER stress inducer], and were stimulated with the TLR5 agonist flagellin. Cytokine release was measured by an enzyme immunoassay. ER stress markers CHOP, GRP78 and XBP1s/u were measured via quantitative PCR and Western blot. Monocyte-derived DCs [moDCs] were cultured with the IEC supernatants and their activation state was measured. Responses from enteroids derived from IBD patients and healthy control participants were compared. RESULTS ER stress enhanced flagellin-induced IL-8 release from Caco-2 cells and enteroids. Moreover, conditioned media activated DCs to become pro-inflammatory, with increased expression of CD80, CD86, MHCII, IL-6, IL-15 and IL-12p70 and decreased expression of CD103 and IL-10. Flagellin-induced IL-8 production correlated with DC activation, suggesting a common stress pathway. Moreover, there were distinct differences in cytokine expression and basal ER stress between IBD and healthy subject-derived enteroid monolayers, suggesting a dysregulated ER stress pathway in IBD-derived enteroids. CONCLUSIONS Cellular stress enhances TLR5 responses in IECs, leading to increased DC activation, indicating a previously unknown mechanistic link between epithelial ER stress and immune activation in IBD. Furthermore, dysregulated ER stress may be propagated from the intestinal epithelial stem cell niche in IBD patients.
Collapse
Affiliation(s)
- William D Rees
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Martin Stahl
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Kevan Jacobson
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Brian Bressler
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Providence Health, Vancouver, BC, Canada
| | - Laura M Sly
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Bruce A Vallance
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Theodore S Steiner
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
2
|
Rees WD, Sly LM, Steiner TS. How do immune and mesenchymal cells influence the intestinal epithelial cell compartment in inflammatory bowel disease? Let's crosstalk about it! J Leukoc Biol 2020; 108:309-321. [PMID: 32057139 DOI: 10.1002/jlb.3mir0120-567r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/12/2020] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
Intestinal epithelial cells provide a front line of defense by establishing a barrier against food Ags, pathogens, and commensal microorganisms. This defense includes the establishment of a tolerogenic environment in the gastrointestinal (GI) tract. The intestinal epithelium replenishes itself by cell turnover every 4-5 days, and this process is facilitated by various pathways of communication between the intestinal epithelial cells (IECs), the underlying stromal cell network, and professional immune cells, which together help establish a proper intestinal stem cell (ISC) niche in the crypt. However, during a state of inflammation, such as in inflammatory bowel diseases (IBD), these communication pathways can be altered, and this can lead to the development of inflammatory IECs within the crypt that further drive inflammation. Here, we review the current literature looking at crosstalk between immune cells, stromal cells, and IECs: how does the immune system potentially alter the ISC niche, and how do IECs influence intestinal immunity? We discuss the latest research using single cell RNA sequencing and intestinal organoid cultures to help answer these questions. A better understanding of this complex crosstalk can help lead to a better understanding of intestinal biology in general, and more efficient therapeutic approaches to treat IBD.
Collapse
Affiliation(s)
- William D Rees
- Department of Medicine, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura M Sly
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Theodore S Steiner
- Department of Medicine, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Lee JH, Choi SY, Jung NC, Song JY, Seo HG, Lee HS, Lim DS. The Effect of the Tumor Microenvironment and Tumor-Derived Metabolites on Dendritic Cell Function. J Cancer 2020; 11:769-775. [PMID: 31949478 PMCID: PMC6959009 DOI: 10.7150/jca.38785] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) have a critical effect on the outcome of adaptive immune responses against growing tumors. Recent studies on the metabolism on DCs provide new insights on the functioning of these critical controllers of innate and adaptive immunity. DCs within the tumor microenvironment (TME) often exist in an inactive state, which is thought to limit the adaptive immune response elicited by the growing tumor. Tumor-derived factors in the TME are known to suppress DC activation and result in functional alterations in DC phenotype. We are now beginning to appreciate that many of these factors can also induce changes in immune cell metabolism. In this review, we discuss the functional alternation of DC phenotype by tumor metabolites.
Collapse
Affiliation(s)
- Jun-Ho Lee
- Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13488, Republic of Korea.,Pharos Vaccine Inc., 545 Dunchon-daero, Jungwon-gu, Seongnam, Gyeonggi-do 13215, Republic of Korea
| | - So-Yeon Choi
- Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13488, Republic of Korea
| | - Nam-Chul Jung
- Pharos Vaccine Inc., 545 Dunchon-daero, Jungwon-gu, Seongnam, Gyeonggi-do 13215, Republic of Korea
| | - Jie-Young Song
- Department of Radiation Cancer Sciences, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun Soo Lee
- Pharos Vaccine Inc., 545 Dunchon-daero, Jungwon-gu, Seongnam, Gyeonggi-do 13215, Republic of Korea
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13488, Republic of Korea
| |
Collapse
|
4
|
Rocha-Pereira C, Silva V, Costa VM, Silva R, Garcia J, Gonçalves-Monteiro S, Duarte-Araújo M, Santos-Silva A, Coimbra S, Dinis-Oliveira RJ, Lopes C, Silva P, Long S, Sousa E, de Lourdes Bastos M, Remião F. Histological and toxicological evaluation, in rat, of a P-glycoprotein inducer and activator: 1-(propan-2-ylamino)-4-propoxy-9 H-thioxanthen-9-one (TX5). EXCLI JOURNAL 2019; 18:697-722. [PMID: 31611753 PMCID: PMC6785774 DOI: 10.17179/excli2019-1675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
Abstract
P-glycoprotein (P-gp) is an ATP-binding cassette transporter involved in the efflux of numerous compounds that influences the pharmacokinetics of xenobiotics. It reduces intestinal absorption and exposure of target cells to toxicity. Thioxanthones are compounds able to induce and/or activate P-gp in vitro. Particularly, 1-(propan-2-ylamino)-4-propoxy-9H-thioxanthen-9-one (TX5) behaves as a P-gp inducer and activator in vitro. The aims of this study were: i) to perform a histological characterization, by testing a single high dose of TX5 [30 mg/kg, body weight (b.w.), gavage], administered to Wistar Han rats, 24 hours after administration; and ii) to perform both a complete histological characterization and a preliminary safety evaluation, in distinct target organs, 24 hours after administration of a single lower dose of TX5 (10 mg/kg, b.w., gavage) to Wistar Han rats. The results showed a relevant histological toxicity for the higher dose of TX5 administered (30 mg/kg, b.w.), manifested by extensive hepatic necrosis and splenic toxicity (parenchyma with hyperemia, increased volume of both white and red pulp, increased follicles marginal zone). Moreover, in the kidneys, a slight hyperemia and tubular edema were observed in TX5-treated animals, as well as an inflammation of the small intestine. On the contrary, for the lower tested dose (10 mg/kg, b.w.), we did not observe any relevant histological toxicity in the evaluated organs. Additionally, no significant differences were found in the ATP levels between TX5-exposed and control animals in any of the evaluated organs, with the exception of the intestine, where ATP levels were significantly higher in TX5-treated rats. Similarly, TX5 caused a significant increase in the ratio GSH/GSSG only in the lungs. TX5 (10 mg/kg, b.w.) did not induce any change in any of the hematological and biochemical circulating evaluated parameters. However, TX5 was able to significantly reduce the activated partial thromboplastin time, without affecting the prothrombin time. The urine biochemical analysis revealed a TX5-mediated increase in both creatinine and sodium. Taken together, our results show that TX5, at a dose of 10 mg/kg, does not induce considerable toxicity in the biological matrices studied. Given this adequate safety profile, TX5 becomes a particularly interesting compound for ex vivo and in vivo studies, regarding the potential for induction and activation of P-gp at the intestinal barrier.
Collapse
Affiliation(s)
- Carolina Rocha-Pereira
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vera Silva
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vera Marisa Costa
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Renata Silva
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Juliana Garcia
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Agronomy, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE, Laboratório de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Margarida Duarte-Araújo
- LAQV/REQUIMTE, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Alice Santos-Silva
- UCIBIO/REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Susana Coimbra
- UCIBIO/REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias Saúde (IINFACTS), Departamento de Ciências, Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias Saúde (IINFACTS), Departamento de Ciências, Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal.,Departamento de Saúde Pública e Ciências Forenses e Educação Médica, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Catarina Lopes
- Molecular Oncology and Viral Pathology Group, Centro de Investigação do IPO-Porto
| | - Paula Silva
- Departamento de Microscopia, Laboratório de Histologia e Embriologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Solida Long
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Fernando Remião
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
5
|
Lauté-Caly DL, Raftis EJ, Cowie P, Hennessy E, Holt A, Panzica DA, Sparre C, Minter B, Stroobach E, Mulder IE. The flagellin of candidate live biotherapeutic Enterococcus gallinarum MRx0518 is a potent immunostimulant. Sci Rep 2019; 9:801. [PMID: 30692549 PMCID: PMC6349862 DOI: 10.1038/s41598-018-36926-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Many links between gut microbiota and disease development have been established in recent years, with particular bacterial strains emerging as potential therapeutics rather than causative agents. In this study we describe the immunostimulatory properties of Enterococcus gallinarum MRx0518, a candidate live biotherapeutic with proven anti-tumorigenic efficacy. Here we demonstrate that strain MRx0518 elicits a strong pro-inflammatory response in key components of the innate immune system but also in intestinal epithelial cells. Using a flagellin knock-out derivative and purified recombinant protein, MRx0518 flagellin was shown to be a TLR5 and NF-κB activator in reporter cells and an inducer of IL-8 production by HT29-MTX cells. E. gallinarum flagellin proteins display a high level of sequence diversity and the flagellin produced by MRx0518 was shown to be more potent than flagellin from E. gallinarum DSM100110. Collectively, these data infer that flagellin may play a role in the therapeutic properties of E. gallinarum MRx0518.
Collapse
Affiliation(s)
- Delphine L Lauté-Caly
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Emma J Raftis
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom.
| | - Philip Cowie
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Emma Hennessy
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Amy Holt
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - D Alessio Panzica
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Christina Sparre
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Beverley Minter
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Eline Stroobach
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Imke E Mulder
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| |
Collapse
|
6
|
Sim JR, Kang SS, Lee D, Yun CH, Han SH. Killed Whole-Cell Oral Cholera Vaccine Induces CCL20 Secretion by Human Intestinal Epithelial Cells in the Presence of the Short-Chain Fatty Acid, Butyrate. Front Immunol 2018; 9:55. [PMID: 29434590 PMCID: PMC5796904 DOI: 10.3389/fimmu.2018.00055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/09/2018] [Indexed: 01/09/2023] Open
Abstract
Short-chain fatty acids (SCFAs), such as acetate, butyrate, and propionate, modulate immune responses in the gut. However, the effect of SCFAs on mucosal vaccine-induced immune cell migration is poorly understood. Here, we investigated whether SCFAs modulate chemokine expression induced by the killed whole-cell oral cholera vaccine, Shanchol™, in human intestinal epithelial cells. Shanchol™ induced expression of CCL2, CCL5, CCL20, and CXCL10 at the mRNA level, but not at the protein level. Interestingly, CCL20 secretion was substantially increased by co-stimulation with Shanchol™ and butyrate, while neither acetate nor propionate showed such effect. Enhanced CCL20 secretion was associated with GPR109A activation, and histone deacetylase (HDAC) inhibition. In addition, co-treatment with Shanchol™ and butyrate synergistically increased the secretion of adenosine triphosphate (ATP). Moreover, CCL20 secretion was decreased by inhibiting the extracellular ATP receptor P2X7. However, neither inflammasomes nor caspases were involved in CCL20 production. The culture supernatant of cells treated with Shanchol™ and butyrate augmented human immature dendritic cell migration. Collectively, these results suggest that butyrate enhances Shanchol™-induced CCL20 production in human intestinal epithelial cells via HDAC inhibition and ATP-P2X7 signaling by activating GPR109A. These effects potentially enhance the mucosal immune responses in the gut induced by this oral cholera vaccine.
Collapse
Affiliation(s)
- Ju-Ri Sim
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Seok-Seong Kang
- Department of Food Science and Biotechnology, Dongguk University Seoul, Goyang, South Korea
| | - Daesang Lee
- The 5th R&D Institute, Agency for Defense Development, Daejeon, South Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Adenosine Triphosphate Promotes Allergen-Induced Airway Inflammation and Th17 Cell Polarization in Neutrophilic Asthma. J Immunol Res 2017. [PMID: 28626774 PMCID: PMC5463097 DOI: 10.1155/2017/5358647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adenosine triphosphate (ATP) is a key mediator to alert the immune dysfunction by acting on P2 receptors. Here, we found that allergen challenge caused an increase of ATP secretion in a murine model of neutrophilic asthma, which correlated well with neutrophil counts and interleukin-17 production. When ATP signaling was blocked by intratracheal administration of the ATP receptor antagonist suramin before challenge, neutrophilic airway inflammation, airway hyperresponsiveness, and Th17-type responses were reduced significantly. Also, neutrophilic inflammation was abrogated when airway ATP levels were locally neutralized using apyrase. Furthermore, ATP promoted the Th17 polarization of splenic CD4+ T cells from DO11.10 mice in vitro. In addition, ovalbumin (OVA) challenge induced neutrophilic inflammation and Th17 polarization in DO11.10 mice, whereas administration of suramin before challenge alleviated these parameters. Thus, ATP may serve as a marker of neutrophilic asthma, and local blockade of ATP signaling might provide an alternative method to prevent Th17-mediated airway inflammation in neutrophilic asthma.
Collapse
|
8
|
Abstract
Purine receptors are located on immune and somatic cells of animal and human organisms. Summation of signals from purine and TOLL-like receptors takes place on the level of inflammasome formation and results in summation of the first and second signals of innate immunity. The first signal - from PAMPs (pathogen associated molecular patterns), the second - from DAMPs (danger associated molecular patterns). Adenosine triphosphate (ATP) is the most studied DAMP. ATP connects with purine receptors, which include P2 (P2X7 receptors are the best described), that results in opening of channels of these receptors and transit of ATP into the cell. In parallel exit of K+ from cells and entrance of Ca2+ and Na+ into the cells is observed, that is associated with activation of the immune competent cell. Damaged cells dying via necrosis or apoptosis are the source of extracellular ATP, as well as activated immunocytes. Signals from P2 and TOLL-like receptors are summarized in effectors of immune response, and activation of P2 receptors in lymphocytes makes a contribution into activation of cells, mediated by T-cell receptor. Negative side of purine receptor activation is a stimulating effect on proliferation and metastasis of malignant cells. The practical output of knowledge on functioning of purine receptors for clinical immunology is the application of agonists and antagonists of purine receptors, as well as explanation of effect of immune modulators from the position of launch of K+/Na+-pump, resulting in prolonged activation of immune competent cells.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Inflammatory bowel diseases (IBDs) reflect the cooperative influence of numerous host and environmental factors, including those of elements of the intestinal immune system, the gut microbiota, and dietary habits. This review focuses on features of the gut microbiota and mucosal immune system that are important in the development and control of IBDs. RECENT FINDINGS Gut innate-type immune cells, including dendritic cells, innate lymphoid cells, and mast cells, educate acquired-type immune cells and intestinal epithelial cells to achieve a symbiotic relationship with commensal bacteria. However, perturbation of the number or type of commensal microorganisms and endogenous genetic polymorphisms that affect immune responses and epithelial barrier system can ultimately lead to IBDs. Providing beneficial bacteria or fecal microbiota transplants helps to reestablish the intestinal environment, maintain its homeostasis, and ameliorate IBDs. SUMMARY The gut immune system participates in a symbiotic milieu that includes cohabiting commensal bacteria. However, dysbiotic conditions and aberrations in the epithelial barrier and gut immune system can disrupt the mutualistic relationship between the host and gut microbiota, leading to IBDs. Progress in our molecular and cellular understanding of this relationship has yielded numerous insights regarding clinical applications for the treatment of IBDs.
Collapse
|
10
|
Naquet P, Giessner C, Galland F. Metabolic adaptation of tissues to stress releases metabolites influencing innate immunity. Curr Opin Immunol 2015; 38:30-8. [PMID: 26605965 DOI: 10.1016/j.coi.2015.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/03/2015] [Accepted: 10/21/2015] [Indexed: 12/11/2022]
Abstract
Recent developments have demonstrated that metabolic rewiring imposed by adaptation of tissues to stress leads to the release of various metabolites which directly or indirectly impact innate immune responses and inflammation. Some metabolites can behave as second messengers and leave local cues in tissues. Immune cells which infiltrate stressed tissues reorient their metabolism to cope with these microenvironmental cues while preserving their effector functions in tissues.
Collapse
Affiliation(s)
- Philippe Naquet
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.
| | - Caroline Giessner
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Franck Galland
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| |
Collapse
|
11
|
Yao Y, Vent-Schmidt J, McGeough MD, Wong M, Hoffman HM, Steiner TS, Levings MK. Tr1 Cells, but Not Foxp3+ Regulatory T Cells, Suppress NLRP3 Inflammasome Activation via an IL-10-Dependent Mechanism. THE JOURNAL OF IMMUNOLOGY 2015; 195:488-97. [PMID: 26056255 DOI: 10.4049/jimmunol.1403225] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/06/2015] [Indexed: 01/09/2023]
Abstract
The two best-characterized types of CD4(+) regulatory T cells (Tregs) are Foxp3(+) Tregs and Foxp3(-) type 1 regulatory (Tr1) cells. The ability of Foxp3(+) Tregs and Tr1 cells to suppress adaptive immune responses is well known, but how these cells regulate innate immunity is less defined. We discovered that CD44(hi)Foxp3(-) T cells from unmanipulated mice are enriched in Tr1 cell precursors, enabling differentiation of cells that express IL-10, as well as Tr1-associated cell surface markers, CD49b and LAG-3, and transcription factors, cMaf, Blimp-1, and AhR. We compared the ability of Tr1 cells versus Foxp3(+) Tregs to suppress IL-1β production from macrophages following LPS and ATP stimulation. Surprisingly, Tr1 cells, but not Foxp3(+) Tregs, inhibited the transcription of pro-IL-1β mRNA, inflammasome-mediated activation of caspase-1, and secretion of mature IL-1β. Consistent with the role for IL-10 in Tr1 cell-mediated suppression, inhibition of inflammasome activation and IL-1β secretion was abrogated in IL-10R-deficient macrophages. Moreover, IL-1β production from macrophages derived from Nlrp3(A350V) knockin mice, which carry a mutation found in cryopyrin-associated periodic syndrome patients, was suppressed by Tr1 cells but not Foxp3(+) Tregs. Using an adoptive transfer model, we found a direct correlation between Tr1 cell engraftment and protection from weight loss in mice expressing a gain-of-function NLRP3. Collectively, these data provide the first evidence for a differential role of Tr1 cells and Foxp3(+) Tregs in regulating innate immune responses. Through their capacity to produce high amounts of IL-10, Tr1 cells may have unique therapeutic effects in disease-associated inflammasome activation.
Collapse
Affiliation(s)
- Yu Yao
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada V5Z 1M9; Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada V6X 3Z6; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada V5Z 1M9; Child and Family Research Institute, Vancouver, British Columbia, Canada V5Z 4H4
| | - Jens Vent-Schmidt
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada V5Z 1M9; Child and Family Research Institute, Vancouver, British Columbia, Canada V5Z 4H4
| | - Matthew D McGeough
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92161
| | - May Wong
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada V5Z 1M9; Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada V6X 3Z6
| | - Hal M Hoffman
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92161; Rady Children's Hospital, University of California, San Diego, San Diego, CA 92093
| | - Theodore S Steiner
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada V5Z 1M9; Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada V6X 3Z6
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada V5Z 1M9; Child and Family Research Institute, Vancouver, British Columbia, Canada V5Z 4H4;
| |
Collapse
|
12
|
Pathophysiological role of extracellular purinergic mediators in the control of intestinal inflammation. Mediators Inflamm 2015; 2015:427125. [PMID: 25944982 PMCID: PMC4405224 DOI: 10.1155/2015/427125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/30/2014] [Indexed: 12/19/2022] Open
Abstract
Purinergic mediators such as adenosine 5′-triphosphate (ATP) are released into the extracellular compartment from damaged tissues and activated immune cells. They are then recognized by multiple purinergic P2X and P2Y receptors. Release and recognition of extracellular ATP are associated with both the development and the resolution of inflammation and infection. Accumulating evidence has recently suggested the potential of purinergic receptors as novel targets for drugs for treating intestinal disorders, including intestinal inflammation and irritable bowel syndrome. In this review, we highlight recent findings regarding the pathophysiological role of purinergic mediators in the development of intestinal inflammation.
Collapse
|
13
|
Abstract
Intestinal epithelial cells are fundamental to maintain barrier integrity and to participate in food degradation and absorption, but they can also decipher signals coming from the outside world and 'educate' the immune system accordingly. In particular, they interact with dendritic cells (DCs) and other intraepithelial immune cells to drive tolerogenic responses under steady state, but they can also release immune mediators to recruit inflammatory cells and to elicit immunity to infectious agents. When these interactions are deregulated, immune disorders can develop. In this review, we discuss some important features of epithelial cells and DCs and their fruitful interactions.
Collapse
Affiliation(s)
- Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| |
Collapse
|
14
|
|
15
|
Chewning JH, Weaver CT. Development and survival of Th17 cells within the intestines: the influence of microbiome- and diet-derived signals. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:4769-77. [PMID: 25381358 PMCID: PMC6007010 DOI: 10.4049/jimmunol.1401835] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Th17 cells have emerged as important mediators of host defense and homeostasis at barrier sites, particularly the intestines, where the greatest number and diversity of the microbiota reside. A critical balance exists between protection of the host from its own microbiota and pathogens and the development of immune-mediated disease. Breaches of local innate immune defenses provide critical stimuli for the induction of Th17 cell development, and additional cues within these tissues promote Th17 cell survival and/or plasticity. Normally, this results in eradication of the microbial threat and restitution of homeostasis. When dysregulated, however, Th17 cells can cause a range of immune-mediated diseases, whether directed against Ags derived from the microbiota, such as in inflammatory bowel disease, or against self-Ags in a range of autoimmune diseases. This review highlights recent discoveries that provide new insights into ways in which environmental signals impact Th17 cell development and function in the intestines.
Collapse
Affiliation(s)
- Joseph H Chewning
- Department of Pediatrics, Pediatric Blood and Marrow Transplantation Program, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Casey T Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
16
|
Li K, Zheng PY, Liu ZQ, Chen DH. Influence of intestinal epithelial integrin αVβ6 on TGF-β1 expression in intestinal dendritic cells. Shijie Huaren Xiaohua Zazhi 2013; 21:1642-1648. [DOI: 10.11569/wcjd.v21.i17.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the role of intestinal epithelial integrin αVβ6 in the generation of intestinal tolerogenic dendritic cell (TolDC).
METHODS: Thirty Balb/c male mice were randomly divided into three groups: a blank control group, an ovalbumin (OVA) group, and an OVA + αVβ6 antibody group. Lamina propria mononuclear cells (LPMCs) of the jejunum and CD11c+ and TGF-β1+ DCs were isolated by flow cytometry. Distribution of CD11c+ DCs and TolDC (CD11c+ TGF-β1+) in the jejunum was detected by double immunofluorescence. Transforming growth factor-β1 (TGF-β1) protein level was determined by Western bolt.
RESULTS: Compared to the blank control group, the number of TGF-β1+ DCs in LPMC in the intestine mucosa significantly increased in the OVA group (P < 0.05); however, the number of intestinal TGF-β1+ DCs significantly decreased in the OVA + αVβ6 antibody group compared to the OVA group (P < 0.05). TolDC cell count in the OVA group was significantly higher than that in the blank control group (13.0 ± 1.76 vs 4.9 ± 1.66, P < 0.05), while CD11c+ DC cell count was significantly lower in the OVA group than in the blank control group (5.0 ± 1.83 vs 8.1 ± 1.91, P < 0.05). TolDC and CD11c+ DC cell counts showed no significant differences between the OVA + anti αVβ6 antibody group and the blank control group (3.2 ± 1.37 vs 4.9 ± 1.66, P > 0.05; 11.0 ± 2.16 vs 8.1 ± 1.91, P > 0.05). Compared to the blank control group, TGF-β1 expression was significantly increased in the OVA group (0.129 ± 0.069 vs 0.236 ± 0.049, P < 0.05); however, TGF-β1 expression was significantly lower in the OVA + αVβ6 antibody group than in the OVA group (0.174 ± 0.075 vs 0.236 ± 0.049, P < 0.05).
CONCLUSION: Intestinal epithelial integrin αVβ6 is necessary to increase TGF-β1 expression in DCs and turn DCs into TolDC, thus playing an important role in intestinal immune tolerance.
Collapse
|