1
|
Gong F, Zheng T, Zhou P. T Follicular Helper Cell Subsets and the Associated Cytokine IL-21 in the Pathogenesis and Therapy of Asthma. Front Immunol 2019; 10:2918. [PMID: 31921177 PMCID: PMC6923700 DOI: 10.3389/fimmu.2019.02918] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
For many decades, T helper 2 (TH2) cells have been considered to predominantly regulate the pathogenic manifestations of allergic asthma, such as IgE-mediated sensitization, airway hyperresponsiveness, and eosinophil infiltration. However, recent discoveries have significantly shifted our understanding of asthma from a simple TH2 cell-dependent disease to a heterogeneous disease regulated by multiple T cell subsets, including T follicular helper (TFH) cells. TFH cells, which are a specialized cell population that provides help to B cells, have attracted intensive attention in the past decade because of their crucial role in regulating antibody response in a broad range of diseases. In particular, TFH cells are essential for IgE antibody class-switching. In this review, we summarize the recent progress regarding the role of TFH cells and their signature cytokine interleukin (IL)-21 in asthma from mouse studies and clinical reports. We further discuss future therapeutic strategies to treat asthma by targeting TFH cells and IL-21.
Collapse
Affiliation(s)
- Fang Gong
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Ting Zheng
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Pengcheng Zhou
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
2
|
Fairfax KC, Everts B, Amiel E, Smith AM, Schramm G, Haas H, Randolph GJ, Taylor JJ, Pearce EJ. IL-4-secreting secondary T follicular helper (Tfh) cells arise from memory T cells, not persisting Tfh cells, through a B cell-dependent mechanism. THE JOURNAL OF IMMUNOLOGY 2015; 194:2999-3010. [PMID: 25712216 DOI: 10.4049/jimmunol.1401225] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Humoral immunity requires cross-talk between T follicular helper (Tfh) cells and B cells. Nevertheless, a detailed understanding of this intercellular interaction during secondary immune responses is lacking. We examined this by focusing on the response to a soluble, unadjuvanted, pathogen-derived Ag (soluble extract of Schistosoma mansoni egg [SEA]) that induces type 2 immunity. We found that activated Tfh cells persisted for long periods within germinal centers following primary immunization. However, the magnitude of the secondary response did not appear to depend on pre-existing Tfh cells. Instead, Tfh cell populations expanded through a process that was dependent on memory T cells recruited into the reactive LN, as well as the participation of B cells. We found that, during the secondary response, IL-4 was critical for the expansion of a population of plasmablasts that correlated with increased SEA-specific IgG1 titers. Additionally, following immunization with SEA (but not with an Ag that induced type 1 immunity), IL-4 and IL-21 were coproduced by individual Tfh cells, revealing a potential mechanism through which appropriate class-switching can be coupled to plasmablast proliferation to enforce type 2 immunity. Our findings demonstrate a pivotal role for IL-4 in the interplay between T and B cells during a secondary Th2 response and have significant implications for vaccine design.
Collapse
Affiliation(s)
- Keke C Fairfax
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907
| | - Bart Everts
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Eyal Amiel
- Department of Medical Laboratory and Radiation Sciences, University of Vermont, Burlington, VT 05405
| | - Amber M Smith
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Helmut Haas
- Research Center Borstel, 23845 Borstel, Germany; and
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Justin J Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Edward J Pearce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110;
| |
Collapse
|
3
|
Kenefeck R, Wang CJ, Kapadi T, Wardzinski L, Attridge K, Clough LE, Heuts F, Kogimtzis A, Patel S, Rosenthal M, Ono M, Sansom DM, Narendran P, Walker LS. Follicular helper T cell signature in type 1 diabetes. J Clin Invest 2015; 125:292-303. [PMID: 25485678 PMCID: PMC4382272 DOI: 10.1172/jci76238] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/06/2014] [Indexed: 12/30/2022] Open
Abstract
The strong genetic association between particular HLA alleles and type 1 diabetes (T1D) indicates a key role for CD4+ T cells in disease; however, the differentiation state of the responsible T cells is unclear. T cell differentiation originally was considered a dichotomy between Th1 and Th2 cells, with Th1 cells deemed culpable for autoimmune islet destruction. Now, multiple additional T cell differentiation fates are recognized with distinct roles. Here, we used a transgenic mouse model of diabetes to probe the gene expression profile of islet-specific T cells by microarray and identified a clear follicular helper T (Tfh) cell differentiation signature. Introduction of T cells with a Tfh cell phenotype from diabetic animals efficiently transferred diabetes to recipient animals. Furthermore, memory T cells from patients with T1D expressed elevated levels of Tfh cell markers, including CXCR5, ICOS, PDCD1, BCL6, and IL21. Defects in the IL-2 pathway are associated with T1D, and IL-2 inhibits Tfh cell differentiation in mice. Consistent with these previous observations, we found that IL-2 inhibited human Tfh cell differentiation and identified a relationship between IL-2 sensitivity in T cells from patients with T1D and acquisition of a Tfh cell phenotype. Together, these findings identify a Tfh cell signature in autoimmune diabetes and suggest that this population could be used as a biomarker and potentially targeted for T1D interventions.
Collapse
Affiliation(s)
- Rupert Kenefeck
- Institute of Immunity and Transplantation, University College London, Division of Infection and Immunity, London, United Kingdom
| | - Chun Jing Wang
- Institute of Immunity and Transplantation, University College London, Division of Infection and Immunity, London, United Kingdom
| | - Tauseef Kapadi
- University of Birmingham, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Lukasz Wardzinski
- Institute of Immunity and Transplantation, University College London, Division of Infection and Immunity, London, United Kingdom
| | - Kesley Attridge
- University of Birmingham, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Louise E. Clough
- University of Birmingham, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Frank Heuts
- Institute of Immunity and Transplantation, University College London, Division of Infection and Immunity, London, United Kingdom
| | - Alexandros Kogimtzis
- Institute of Immunity and Transplantation, University College London, Division of Infection and Immunity, London, United Kingdom
| | - Sapna Patel
- University of Birmingham, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Miranda Rosenthal
- Institute of Immunity and Transplantation, University College London, Division of Infection and Immunity, London, United Kingdom
| | - Masahiro Ono
- Immunology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - David M. Sansom
- Institute of Immunity and Transplantation, University College London, Division of Infection and Immunity, London, United Kingdom
| | - Parth Narendran
- University of Birmingham, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Lucy S.K. Walker
- Institute of Immunity and Transplantation, University College London, Division of Infection and Immunity, London, United Kingdom
| |
Collapse
|
4
|
Streeck H, D'Souza MP, Littman DR, Crotty S. Harnessing CD4⁺ T cell responses in HIV vaccine development. Nat Med 2013; 19:143-9. [PMID: 23389614 DOI: 10.1038/nm.3054] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/05/2012] [Indexed: 02/07/2023]
Abstract
CD4(+) T cells can perform a panoply of tasks to shape an effective response against a pathogen. Limited attention has been paid to the potential importance of functional CD4(+) T cell responses in the context of the development of next-generation vaccines, including HIV vaccines. Many CD4(+) T cell functions are newly appreciated and only partially understood. A workshop was held as a forum to bring together a small group of experts to exchange ideas on the role of CD4(+) T cells in developing durable functional antibody responses, via follicular helper T cells, as well as on the roles of CD4(+) T cells in other aspects of protective immunity. Here we discuss whether CD4(+) T cell responses may represent a beneficial component of an efficacious HIV vaccine.
Collapse
Affiliation(s)
- Hendrik Streeck
- US Military HIV Research Program, Henry M. Jackson Foundation, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.
| | | | | | | |
Collapse
|