1
|
Coren LV, Trivett MT, Welker JL, Thomas JA, Gorelick RJ, Kose E, Immonen TT, Czarra K, Fennessey CM, Trubey CM, Lifson JD, Swanstrom AE. Modifications to rhesus macaque TCR constant regions improve TCR cell surface expression. PLoS One 2025; 20:e0314751. [PMID: 39787126 PMCID: PMC11717225 DOI: 10.1371/journal.pone.0314751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/17/2024] [Indexed: 01/12/2025] Open
Abstract
T cell immunotherapy success is dependent on effective levels of antigen receptor expressed at the surface of engineered cells. Efforts to optimize surface expression in T cell receptor (TCR)-based therapeutic approaches include optimization of cellular engineering methods and coding sequences, and reducing the likelihood of exogenous TCR α and β chains mispairing with the endogenous TCR chains. Approaches to promote correct human TCR chain pairing include constant region mutations to create an additional disulfide bond between the two chains, full murinization of the constant region of the TCR α and β sequences, and a minimal set of murine mutations to the TCR α and β constant regions. Preclinical animal models are valuable tools to optimize engineering designs and methods, and to evaluate the potential for off-target tissue injury. To further develop rhesus macaque models for TCR based cellular immunotherapy, we tested methods for improving cell surface expression of rhesus macaque TCR in rhesus macaque primary cells by generating five alternative TCRαβ constant region constructs in the context of a SIV Gag-specific TCR: 1. human codon optimized rhesus macaque (RH); 2. RH TCR with an additional disulfide linkage; 3. rhesus macaque constant sequences with minimal murine amino acid substitutions; 4. murinized constant sequences; and 5. murinized constant sequences with a portion of the exposed FG loop in the β constant sequence replaced with rhesus macaque sequence to reduce potential immunogencity. Murinization or mutation of a minimal set of amino acids to the corresponding murine sequence of the constant region resulted in the greatest increase in rhesus macaque TCR surface expression relative to wild type. All novel TCR constructs retained the ability to induce production of cytokines in response to cognate peptide antigen specific stimulation. This work can inform the design of TCRs selected for use in rhesus macaque models of TCR-based cellular immunotherapy.
Collapse
MESH Headings
- Animals
- Macaca mulatta
- Humans
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Mice
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Lori V. Coren
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Matthew T. Trivett
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jorden L. Welker
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - James A. Thomas
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Emek Kose
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Taina T. Immonen
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Kelli Czarra
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Charles M. Trubey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Adrienne E. Swanstrom
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| |
Collapse
|
2
|
Golikova EA, Alshevskaya AA, Alrhmoun S, Sivitskaya NA, Sennikov SV. TCR-T cell therapy: current development approaches, preclinical evaluation, and perspectives on regulatory challenges. J Transl Med 2024; 22:897. [PMID: 39367419 PMCID: PMC11451006 DOI: 10.1186/s12967-024-05703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
TCR-T cell therapy represents a promising advancement in adoptive immunotherapy for cancer treatment. Despite its potential, the development and preclinical testing of TCR-T cells face significant challenges. This review provides a structured overview of the key stages in preclinical testing, including in silico, in vitro, and in vivo methods, within the context of the sequential development of novel therapies. This review aimed to systematically outline the processes for evaluating TCR-T cells at each stage: from in silico approaches used to predict target antigens, assess cross-reactivity, and minimize off-target effects, to in vitro assays designed to measure cell functionality, cytotoxicity, and activation. Additionally, the review discusses the limitations of in vivo testing in animal models, particularly in accurately reflecting the human tumor microenvironment and immune responses. Performed analysis emphasizes the importance of these preclinical stages in the safe and effective development of TCR-T cell therapies. While current models provide valuable insights, we identify critical gaps, particularly in in vivo biodistribution and toxicity assessments, and propose the need for enhanced standardization and the development of more representative models. This structured approach aims to improve the predictability and safety of TCR-T cell therapy as it advances towards clinical application.
Collapse
Affiliation(s)
- Elena A Golikova
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435, Moscow, Russia
| | - Alina A Alshevskaya
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435, Moscow, Russia.
| | - Saleh Alrhmoun
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435, Moscow, Russia
- Federal State Budgetary Scientific Institution, "Research Institute of Fundamental and Clinical Immunology" (RIFCI), 630099, Novosibirsk, Russia
| | - Natalia A Sivitskaya
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435, Moscow, Russia
| | - Sergey V Sennikov
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435, Moscow, Russia
- Federal State Budgetary Scientific Institution, "Research Institute of Fundamental and Clinical Immunology" (RIFCI), 630099, Novosibirsk, Russia
| |
Collapse
|
3
|
Gaissmaier L, Elshiaty M, Christopoulos P. Breaking Bottlenecks for the TCR Therapy of Cancer. Cells 2020; 9:E2095. [PMID: 32937956 PMCID: PMC7564186 DOI: 10.3390/cells9092095] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint inhibitors have redefined the treatment of cancer, but their efficacy depends critically on the presence of sufficient tumor-specific lymphocytes, and cellular immunotherapies develop rapidly to fill this gap. The paucity of suitable extracellular and tumor-associated antigens in solid cancers necessitates the use of neoantigen-directed T-cell-receptor (TCR)-engineered cells, while prevention of tumor evasion requires combined targeting of multiple neoepitopes. These can be currently identified within 2 weeks by combining cutting-edge next-generation sequencing with bioinformatic pipelines and used to select tumor-reactive TCRs in a high-throughput manner for expeditious scalable non-viral gene editing of autologous or allogeneic lymphocytes. "Young" cells with a naive, memory stem or central memory phenotype can be additionally armored with "next-generation" features against exhaustion and the immunosuppressive tumor microenvironment, where they wander after reinfusion to attack heavily pretreated and hitherto hopeless neoplasms. Facilitated by major technological breakthroughs in critical manufacturing steps, based on a solid preclinical rationale, and backed by rapidly accumulating evidence, TCR therapies break one bottleneck after the other and hold the promise to become the next immuno-oncological revolution.
Collapse
Affiliation(s)
- Lena Gaissmaier
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany; (L.G.); (M.E.)
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Mariam Elshiaty
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany; (L.G.); (M.E.)
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany; (L.G.); (M.E.)
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Morandi F, Yazdanifar M, Cocco C, Bertaina A, Airoldi I. Engineering the Bridge between Innate and Adaptive Immunity for Cancer Immunotherapy: Focus on γδ T and NK Cells. Cells 2020; 9:E1757. [PMID: 32707982 PMCID: PMC7464083 DOI: 10.3390/cells9081757] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/12/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Most studies on genetic engineering technologies for cancer immunotherapy based on allogeneic donors have focused on adaptive immunity. However, the main limitation of such approaches is that they can lead to severe graft-versus-host disease (GvHD). An alternative approach would bolster innate immunity by relying on the natural tropism of some subsets of the innate immune system, such as γδ T and natural killer (NK) cells, for the tumor microenvironment and their ability to kill in a major histocompatibility complex (MHC)-independent manner. γδ T and NK cells have the unique ability to bridge innate and adaptive immunity while responding to a broad range of tumors. Considering these properties, γδ T and NK cells represent ideal sources for developing allogeneic cell therapies. Recently, significant efforts have been made to exploit the intrinsic anti-tumor capacity of these cells for treating hematologic and solid malignancies using genetic engineering approaches such as chimeric antigen receptor (CAR) and T cell receptor (TCR). Here, we review over 30 studies on these two approaches that use γδ T and NK cells in adoptive cell therapy (ACT) for treating cancer. Based on those studies, we propose several promising strategies to optimize the clinical translation of these approaches.
Collapse
Affiliation(s)
- Fabio Morandi
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 516147 Genova, Italy; (F.M.); (C.C.)
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA;
| | - Claudia Cocco
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 516147 Genova, Italy; (F.M.); (C.C.)
| | - Alice Bertaina
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA;
| | - Irma Airoldi
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 516147 Genova, Italy; (F.M.); (C.C.)
| |
Collapse
|
5
|
McBride DA, Kerr MD, Wai SL, Shah NJ. Applications of molecular engineering in T-cell-based immunotherapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1557. [PMID: 30972976 PMCID: PMC7869905 DOI: 10.1002/wnan.1557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/24/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
Harnessing an individual's immune cells to mediate antitumor and antiviral responses is a life-saving option for some patients with otherwise intractable forms of cancer and infectious disease. In particular, T-cell-based engineered immune cells are a powerful new class of therapeutics with remarkable efficacy. Clinical experience has helped to define some of the major challenges for reliable, safe, and effective deployment of T-cells against a broad range of diseases. While poised to revolutionize immunotherapy, scalable manufacturing, safety, specificity, and the development of resistance are potential roadblocks in their widespread usage. The development of molecular engineering tools to allow for the direct or indirect engineering of T-cells to enable one to troubleshoot delivery issues, amplify immunomodulatory effects, integrate the synergistic effects of different molecules, and home to the target cells in vivo. In this review, we will analyze thus-far developed cell- and material-based tools for enhancing T-cell therapies, including methods to improve safety and specificity, enhancing efficacy, and overcoming limitations in scalable manufacturing. We summarize the potential of T-cells as immune modulating therapies and the potential future directions for enabling their adoption for a broad range of diseases. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Cells at the Nanoscale.
Collapse
Affiliation(s)
- David A McBride
- Department of Nanoengineering, University of California, San Diego, California
- Program in Chemical Engineering, University of California, San Diego, California
- Center for Nano-Immuno Engineering, University of California, San Diego, California
| | - Matthew D Kerr
- Department of Nanoengineering, University of California, San Diego, California
- Program in Chemical Engineering, University of California, San Diego, California
- Center for Nano-Immuno Engineering, University of California, San Diego, California
| | - Shinya L Wai
- Department of Nanoengineering, University of California, San Diego, California
- Center for Nano-Immuno Engineering, University of California, San Diego, California
| | - Nisarg J Shah
- Department of Nanoengineering, University of California, San Diego, California
- Program in Chemical Engineering, University of California, San Diego, California
- Center for Nano-Immuno Engineering, University of California, San Diego, California
- Graduate Program in Immunology, University of California, San Diego, California
- San Diego Center for Precision Immunotherapy, University of California, San Diego, California
| |
Collapse
|
6
|
Cullmann K, Blokland KEC, Sebe A, Schenk F, Ivics Z, Heinz N, Modlich U. Sustained and regulated gene expression by Tet-inducible "all-in-one" retroviral vectors containing the HNRPA2B1-CBX3 UCOE ®. Biomaterials 2018; 192:486-499. [PMID: 30508767 DOI: 10.1016/j.biomaterials.2018.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022]
Abstract
Genetic modification of induced pluripotent stem (iPS) cells may be necessary for the generation of effector cells for cellular therapies. Hereby, it can be important to induce transgene expression at restricted and defined time windows, especially if it interferes with pluripotency or differentiation. To achieve this, inducible expression systems can be used such as the tetracycline-inducible retroviral vector system, however, retroviral expression can be subjected to epigenetic silencing or to position-effect variegation. One strategy to overcome this is the incorporation of ubiquitous chromatin opening elements (UCOE®'s) into retroviral vectors to maintain a transcriptionally permissive chromatin state at the integration site. In this study, we developed Tet-inducible all-in-one gammaretroviral vectors carrying different sized UCOE®'s derived from the A2UCOE. The ability to prevent vector silencing by preserving the Tet-regulatory potential was investigated in different cell lines, and in murine and human iPS cells. A 670-bp fragment spanning the CBX3 promoter region of A2UCOE (U670) was the most potent element in preventing silencing, and conferred the strongest expression from the vector in the induced state. While longer fragments of A2UCOEs also sustained expression, vector titers and induction efficiencies were impaired. Finally, we demonstrate that U670 can be used for constitutive expression of the transactivator in the all-in-one vector for faithful regulation of transgenes by doxycycline, including the thrombopoietin receptor Mpl conferring cytokine-dependent cell growth.
Collapse
Affiliation(s)
- Katharina Cullmann
- Research Group for Gene Modification in Stem Cells, Div. of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Kaj E C Blokland
- Research Group for Gene Modification in Stem Cells, Div. of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Attila Sebe
- Div. of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Franziska Schenk
- Research Group for Gene Modification in Stem Cells, Div. of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Zoltán Ivics
- Div. of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Niels Heinz
- Research Group for Gene Modification in Stem Cells, Div. of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany; BioNTech Innovative Manufacturing Services GmbH, Idar-Oberstein, Germany
| | - Ute Modlich
- Research Group for Gene Modification in Stem Cells, Div. of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany.
| |
Collapse
|
7
|
Campillo-Davo D, Fujiki F, Van den Bergh JMJ, De Reu H, Smits ELJM, Goossens H, Sugiyama H, Lion E, Berneman ZN, Van Tendeloo V. Efficient and Non-genotoxic RNA-Based Engineering of Human T Cells Using Tumor-Specific T Cell Receptors With Minimal TCR Mispairing. Front Immunol 2018; 9:2503. [PMID: 30464762 PMCID: PMC6234959 DOI: 10.3389/fimmu.2018.02503] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
Genetic engineering of T cells with tumor specific T-cell receptors (TCR) is a promising strategy to redirect their specificity against cancer cells in adoptive T cell therapy protocols. Most studies are exploiting integrating retro- or lentiviral vectors to permanently introduce the therapeutic TCR, which can pose serious safety issues when treatment-related toxicities would occur. Therefore, we developed a versatile, non-genotoxic transfection method for human unstimulated CD8+ T cells. We describe an optimized double sequential electroporation platform whereby Dicer-substrate small interfering RNAs (DsiRNA) are first introduced to suppress endogenous TCR α and β expression, followed by electroporation with DsiRNA-resistant tumor-specific TCR mRNA. We demonstrate that double sequential electroporation of human primary unstimulated T cells with DsiRNA and TCR mRNA leads to unprecedented levels of transgene TCR expression due to a strongly reduced degree of TCR mispairing. Importantly, superior transgenic TCR expression boosts epitope-specific CD8+ T cell activation and killing activity. Altogether, DsiRNA and TCR mRNA double sequential electroporation is a rapid, non-integrating and highly efficient approach with an enhanced biosafety profile to engineer T cells with antigen-specific TCRs for use in early phase clinical trials.
Collapse
Affiliation(s)
- Diana Campillo-Davo
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Fumihiro Fujiki
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Johan M J Van den Bergh
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Hans De Reu
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Evelien L J M Smits
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium.,Faculty of Medicine and Health Sciences, Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Herman Goossens
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.,Division of Clinical Biology, Antwerp University Hospital, Edegem, Belgium
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eva Lion
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Zwi N Berneman
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium.,Division of Hematology, Antwerp University Hospital, Edegem, Belgium
| | - Viggo Van Tendeloo
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
8
|
DNA-binding of the Tet-transactivator curtails antigen-induced lymphocyte activation in mice. Nat Commun 2017; 8:1028. [PMID: 29044097 PMCID: PMC5647323 DOI: 10.1038/s41467-017-01022-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 08/14/2017] [Indexed: 12/31/2022] Open
Abstract
The Tet-On/Off system for conditional transgene expression constitutes state-of-the-art technology to study gene function by facilitating inducible expression in a timed and reversible manner. Several studies documented the suitability and versatility of this system to trace lymphocyte fate and to conditionally express oncogenes or silence tumour suppressor genes in vivo. Here, we show that expression of the tetracycline/doxycycline-controlled Tet-transactivator, while tolerated well during development and in immunologically unchallenged animals, impairs the expansion of antigen-stimulated T and B cells and thereby curtails adaptive immune responses in vivo. Transactivator-mediated cytotoxicity depends on DNA binding, but can be overcome by BCL2 overexpression, suggesting that apoptosis induction upon lymphocyte activation limits cellular and humoral immune responses. Our findings suggest a possible system-intrinsic biological bias of the Tet-On/Off system in vivo that will favour the outgrowth of apoptosis resistant clones, thus possibly confounding data published using such systems. Tet-transactivators are used for direct regulation of gene expression, RNA interference and for CRISPR/Cas9-based systems. Here the authors show that DNA-bound Tet-transactivators can induce cell death in antigen-activated lymphocytes in vivo, putting into question the use of, and in vivo data generated with, these molecular tools.
Collapse
|
9
|
Wisskirchen K, Metzger K, Schreiber S, Asen T, Weigand L, Dargel C, Witter K, Kieback E, Sprinzl MF, Uckert W, Schiemann M, Busch DH, Krackhardt AM, Protzer U. Isolation and functional characterization of hepatitis B virus-specific T-cell receptors as new tools for experimental and clinical use. PLoS One 2017; 12:e0182936. [PMID: 28792537 PMCID: PMC5549754 DOI: 10.1371/journal.pone.0182936] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022] Open
Abstract
T-cell therapy of chronic hepatitis B is a novel approach to restore antiviral T-cell immunity and cure the infection. We aimed at identifying T-cell receptors (TCR) with high functional avidity that have the potential to be used for adoptive T-cell therapy. To this end, we cloned HLA-A*02-restricted, hepatitis B virus (HBV)-specific T cells from patients with acute or resolved HBV infection. We isolated 11 envelope- or core-specific TCRs and evaluated them in comprehensive functional analyses. T cells were genetically modified by retroviral transduction to express HBV-specific TCRs. CD8+ as well as CD4+ T cells became effector T cells recognizing even picomolar concentrations of cognate peptide. TCR-transduced T cells were polyfunctional, secreting the cytokines interferon gamma, tumor necrosis factor alpha and interleukin-2, and effectively killed hepatoma cells replicating HBV. Notably, our collection of HBV-specific TCRs recognized peptides derived from HBV genotypes A, B, C and D presented on different HLA-A*02 subtypes common in areas with high HBV prevalence. When co-cultured with HBV-infected cells, TCR-transduced T cells rapidly reduced viral markers within two days. Our unique set of HBV-specific TCRs with different affinities represents an interesting tool for elucidating mechanisms of TCR-MHC interaction and dissecting specific anti-HBV mechanisms exerted by T cells. TCRs with high functional avidity might be suited to redirect T cells for adoptive T-cell therapy of chronic hepatitis B and HBV-induced hepatocellular carcinoma.
Collapse
Affiliation(s)
- Karin Wisskirchen
- Institute of Virology, Technische Universität München / Helmholtz Zentrum München, Munich, Germany
- German Centre for Infection Research (DZIF), Munich partner site, Munich, Germany
- * E-mail: (UP); (KW)
| | - Kai Metzger
- Institute of Virology, Technische Universität München / Helmholtz Zentrum München, Munich, Germany
| | - Sophia Schreiber
- Institute of Virology, Technische Universität München / Helmholtz Zentrum München, Munich, Germany
| | - Theresa Asen
- Institute of Virology, Technische Universität München / Helmholtz Zentrum München, Munich, Germany
| | - Luise Weigand
- III. Medical Department, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christina Dargel
- Institute of Virology, Technische Universität München / Helmholtz Zentrum München, Munich, Germany
| | - Klaus Witter
- Laboratory for Immunogenetics and Molecular Diagnostics, Klinikum der Universität München, Munich, Germany
| | - Elisa Kieback
- Institute of Biology, Humboldt-University Berlin, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Berlin Institute of Health, Berlin, Germany
| | - Martin F. Sprinzl
- Institute of Virology, Technische Universität München / Helmholtz Zentrum München, Munich, Germany
| | - Wolfgang Uckert
- Institute of Biology, Humboldt-University Berlin, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Berlin Institute of Health, Berlin, Germany
| | - Matthias Schiemann
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Dirk H. Busch
- German Centre for Infection Research (DZIF), Munich partner site, Munich, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Focus Groups “Viral Hepatitis” and “Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Angela M. Krackhardt
- III. Medical Department, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München / Helmholtz Zentrum München, Munich, Germany
- German Centre for Infection Research (DZIF), Munich partner site, Munich, Germany
- Focus Groups “Viral Hepatitis” and “Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München, Munich, Germany
- * E-mail: (UP); (KW)
| |
Collapse
|
10
|
Cohen JE, Merims S, Frank S, Engelstein R, Peretz T, Lotem M. Adoptive cell therapy: past, present and future. Immunotherapy 2017; 9:183-196. [DOI: 10.2217/imt-2016-0112] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The immune system is a potent inhibitor of tumor growth with curative potential, constituting in many eyes the future of antineoplastic therapy. Adoptive cell therapy (ACT) is a form of immunotherapy in which autologous cancer-cognate lymphocytes are expanded and modified ex vivo and re-infused to combat the tumor. This review follows the evolvement of ACT and treatment protocols, focusing on unresolved dilemmas regarding this treatment while providing evidence for its effectiveness in refractory patients. Future directions of ACT are discussed, in particular with regard to genetic engineering of autologous cells, and the role of ACT in the era of checkpoint inhibitors is addressed.
Collapse
Affiliation(s)
- Jonathan E Cohen
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Sharon Merims
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Stephen Frank
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Roni Engelstein
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
11
|
Abstract
Tumors originate from a number of genetic events that deregulate homeostatic mechanisms controlling normal cell behavior. The immune system, devoted to patrol the organism against pathogenic events, can identify transformed cells, and in several cases cause their elimination. It is however clear that several mechanisms encompassing both central and peripheral tolerance limit antitumor immunity, often resulting into progressive diseases. Adoptive T-cell therapy with either allogeneic or autologous T cells can transfer therapeutic immunity. To date, genetic engineering of T cells appears to be a powerful tool for shaping tumor immunity. In this review, we discuss the most recent achievements in the areas of suicide gene therapy, and TCR-modified T cells and chimeric antigen receptor gene-modified T cells. We provide an overview of current strategies aimed at improving the safety and efficacy of these approaches, with an outlook on prospective developments.
Collapse
Affiliation(s)
- Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Mondino
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
12
|
Lachmann N, Brennig S, Hillje R, Schermeier H, Phaltane R, Dahlmann J, Gruh I, Heinz N, Schiedlmeier B, Baum C, Moritz T. Tightly regulated 'all-in-one' lentiviral vectors for protection of human hematopoietic cells from anticancer chemotherapy. Gene Ther 2015; 22:883-92. [PMID: 26125609 DOI: 10.1038/gt.2015.61] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 06/09/2015] [Accepted: 06/18/2015] [Indexed: 01/12/2023]
Abstract
Successful application of gene therapy strategies may require stringently regulated transgene expression. Along this line, we describe a doxycycline (Dox)-inducible 'all-in-one' lentiviral vector design using the pTET-T11 (TII) minimal-promoter and a reverse transactivator protein (rtTA2S-M2) driven by the phosphoglycerate kinase promoter allowing for tight regulation of transgene expression (Lv.TII vectors). Vector design was evaluated in human hematopoietic cells in the context of cytidine deaminase (hCDD)-based myeloprotective gene therapy. Upon Dox administration, a rapid (16-24 h) and dose-dependent (>0.04 μg ml(-1) Dox) onset of transgene expression was detected in Lv.TII.CDD gene-modified K562 cells as well as in primary human CD34(+) hematopoietic cells. Importantly, in both cell models low background transgene expression was observed in the absence of Dox. Functionality of Dox-inducible hCDD expression was demonstrated by >10-fold increase in cytosine arabinoside (1-β-d-arabinofuranosylcytosine, Ara-C) resistance of Lv.TII.CDD-transduced K562 cells. In addition, Lv.TII.CDD-transduced CD34(+)-derived myeloid cells were protected from up to 300 nm Ara-C (control affected from 50 nm onwards). These data clearly demonstrate the suitability of our self-inactivating lentiviral vector to induce robust, tightly regulated transgene expression in human hematopoietic cells with minimal background activity and highlight the potential of our construct in myeloprotective gene therapy strategies.
Collapse
Affiliation(s)
- N Lachmann
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - S Brennig
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - R Hillje
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - H Schermeier
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - R Phaltane
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - J Dahlmann
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - I Gruh
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - N Heinz
- LOEWE-Research Group for (targeted) Gene Modification in Stem Cells, Paul-Ehrlich-Institute, Langen, Germany
| | - B Schiedlmeier
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - C Baum
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - T Moritz
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
13
|
RNAi-mediated TCR knockdown prevents autoimmunity in mice caused by mixed TCR dimers following TCR gene transfer. Mol Ther 2014; 22:1983-91. [PMID: 25048215 DOI: 10.1038/mt.2014.142] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 07/17/2014] [Indexed: 12/31/2022] Open
Abstract
Genetically modified T cells that express a transduced T cell receptor (TCR) α/β heterodimer in addition to their endogenous TCR are used in clinical studies to treat cancer. These cells express two TCR-α and two TCR-β chains that do not only compete for CD3 proteins but also form potentially self-reactive mixed TCR dimers, composed of endogenous and transferred chains. To overcome these deficits, we developed an RNAi-TCR replacement vector that simultaneously silences the endogenous TCR and expresses an RNAi-resistant TCR. Transduction of the virus-specific P14 TCR without RNAi resulted in unequal P14 TCR-α and -β chain surface levels, indicating heterodimerization with endogenous TCR chains. Such unequal expression was also observed following TCR gene optimization. Equal surface levels of the introduced TCR chains were however achieved by silencing the endogenous TCR. Importantly, all mice that received cells transduced with the native or optimized P14 TCR developed lethal TCR gene transfer-induced graft-versus-host-disease (TI-GVHD) due to formation of mixed TCR dimers. In contrast, TI-GVHD was almost completely prevented when using the RNAi-TCR replacement vector. Our data demonstrate that RNAi-assisted TCR replacement reduces the formation of mixed TCR dimers, and thereby significantly reduces the risk of TI-GVHD in TCR gene therapy.
Collapse
|