1
|
Valdés N, Espinoza D, Pareja-Barrueto C, Olate N, Barraza-Rojas F, Benavides-Larenas A, Cortés M, Imarai M. Expression and regulation of the CXCL9-11 chemokines and CXCR3 receptor in Atlantic salmon (Salmo salar). Front Immunol 2024; 15:1455457. [PMID: 39301034 PMCID: PMC11410577 DOI: 10.3389/fimmu.2024.1455457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024] Open
Abstract
Chemokines are cytokines that mediate leukocyte traffic between the lymphoid organs, the bloodstream, and the site of tissue damage, which is essential for an efficient immune response. In particular, the gamma interferon (IFN- γ) inducible chemokines CXCL9, CXCL10, and CXCL11, and their receptor CXCR3, are involved in T cell and macrophage recruitment to the site of infection. The nature and function of these chemokines and their receptor are well-known in mammals, but further research is needed to achieve a similar level of understanding in fish immunity. Thus, in this study, we seek to identify the genes encoding the components of the Atlantic salmon (Salmo salar) CXCL9, CXCL10, CXCL11/CXCR3 axis (CXCL9-11/CXCR3), predict the protein structure from the amino acid sequence, and explore the regulation of gene expression as well as the response of these chemokines and their receptor to viral infections. The cxcl9, cxcl10, cxcl11, and cxcr3 gene sequences were retrieved from the databases, and the phylogenetic analysis was conducted to determine the evolutionary relationships. The study revealed an interesting pattern of clustering and conservation among fish and mammalian species. The salmon chemokine sequences clustered with orthologs from other fish species, while the mammalian sequences formed separate clades. This indicates a divergent evolution of chemokines between mammals and fish, possibly due to different evolutionary pressures. While the structural analysis of the chemokines and the CXCR3 receptor showed the conservation of critical motifs and domains, suggesting preserved functions and stability throughout evolution. Regarding the regulation of gene expression, some components of the CXCL9-11/CXCR3 axis are induced by recombinant gamma interferon (rIFN-γ) and by Infectious pancreatic necrosis virus (IPNV) infection in Atlantic salmon cells. Further studies are needed to explore the role of Atlantic salmon CXCL9-11 chemokines in regulating immune cell migration and endothelial activation, as seen in mammals. To the best of our knowledge, there have been no functional studies of chemokines to understand these effects in Atlantic salmon.
Collapse
Affiliation(s)
- Natalia Valdés
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Daniela Espinoza
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudia Pareja-Barrueto
- Departamento de Hematología y Oncología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Olate
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Barraza-Rojas
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Almendra Benavides-Larenas
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Marcos Cortés
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Mónica Imarai
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
2
|
Lu H, Liu H, Wang K, Shi J, Sun Y. Association Between Serum Amyloid A Expression and Disease Control after Endoscopic Sinus Surgery in Patients With Chronic Rhinosinusitis With Nasal Polyps. EAR, NOSE & THROAT JOURNAL 2024; 103:NP331-NP339. [PMID: 34814741 DOI: 10.1177/01455613211051311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Our previous study revealed that serum amyloid A (SAA) levels in polyp tissues could serve as a biomarker for the prediction of corticosteroid insensitivity in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). However, their association with disease control status in the patients after endoscopic sinus surgery remains to be assessed. METHODS Polyp tissues and control uncinate process mucosa were collected from 48 patients with CRSwNP and 10 healthy control subjects. SAA expression was examined using immunohistochemistry and enzyme-linked immunosorbent assay. Receiver operating characteristic (ROC) curves were performed to determine the predictive value of SAA in nasal polyps. The clinical characteristics of 2 CRSwNP subtypes (SAAhigh and SAAlow) were evaluated. RESULTS The SAA expression levels in polyp tissues were significantly elevated both in non-eosinophilic and eosinophilic CRSwNP as compared to the healthy controls. In patients with CRSwNP, the tissue SAA level was significantly higher in the disease-controlled patients than those of the partly controlled and uncontrolled. ROC curve analysis revealed that a cut-off value of 114.9 ng/mL for the tissue SAA level predicted the patients with disease-controlled status with 93.33% sensitivity and 63.64% specificity (AUC = .8727, P < .001). Furthermore, The SAAhigh subgroup showed higher tissue eosinophil numbers and percentage of the disease-controlled patients compared to the SAAlow subgroup. CONCLUSIONS Our findings suggest that measurements of SAA in polyp tissues may provide useful information for evaluating CRSwNP conditions, especially identifying the CRSwNP patients with disease-controlled status after endoscopic sinus surgery.
Collapse
Affiliation(s)
- Hangui Lu
- Department of Otolaryngology, Shantou Central Hospital, Shantou, China
| | - Haiyan Liu
- Department of Otolaryngology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Kanghua Wang
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianbo Shi
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yueqi Sun
- Department of Otolaryngology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Fu Q, Hu J, Zhang P, Li Y, Zhao S, Cao M, Yang N, Li C. CC and CXC chemokines in turbot (Scophthalmus maximus L.): Identification, evolutionary analyses, and expression profiling after Aeromonas salmonicida infection. FISH & SHELLFISH IMMUNOLOGY 2022; 127:82-98. [PMID: 35690275 DOI: 10.1016/j.fsi.2022.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 05/06/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Chemokines are a superfamily of structurally related cytokines, which exert essential roles in guiding cell migration in development, homeostasis, and immunity. CC and CXC chemokines are the two major subfamilies in teleost species. In this study, a total of seventeen CC and CXC chemokines, with inclusion of twelve CC and five CXC chemokines, were systematically identified from the turbot genome, making turbot the teleost harboring the least number of CC and CXC chemokines among all teleost species ever reported. Phylogeny, synteny, and genomic organization analyses were performed to annotate these genes, and multiple chemokine genes were identified in the turbot genome, due to the tandem duplications (CCL19 and CCL20), the whole genome duplications (CCL20, CCL25, and CXCL12), and the teleost-specific members (CCL34-36, CCL44, and CXCL18). In addition, chemokines were ubiquitously expressed in nine examined healthy tissues, with high expression levels observed in liver, gill, and spleen. Moreover, most chemokines were significantly differentially expressed in gill and spleen after Aeromonas salmonicida infection, and exhibited tissue-specific and time-dependent manner. Finally, protein-protein interaction network (PPI) analysis indicated that turbot chemokines interacted with a few immune-related genes such as interleukins, cathepsins, stats, and TLRs. These results should be valuable for comparative immunological studies and provide insights for further functional characterization of chemokines in teleost.
Collapse
Affiliation(s)
- Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jie Hu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Pei Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shoucong Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
4
|
Lai Y, Li Y, Gao L. Serum amyloid A protein in cancer prognosis: a meta-analysis and systematic review. Transl Cancer Res 2022; 10:2255-2264. [PMID: 35116543 PMCID: PMC8798074 DOI: 10.21037/tcr-20-3417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022]
Abstract
Background Published studies showed divergent results of the prognostic value of serum amyloid A protein (SAA) in patients with different cancers. Therefore, we conducted this meta-analysis so as to assess the association between SAA and cancer prognosis. Methods A comprehensive search was conducted to identify the literatures working over SAA and survival in patients with cancers published until January 2020. Sufficient data for assessing overall survival in cancers were extracted descriptively and quantitatively from the studies and a pooled odds ratio was calculated using the Mantel-Haenszel fixed-effect or random-effect model. Results Ten eligible papers were identified by two reviewers independently, including 4 studies that evaluated renal cell carcinoma (RCC), 2 studies evaluated lung cancer and the other 3 studies evaluated melanoma, gastric cancer and different cancers. Elevated SAA expression and shorter overall survival (OS) had a statistically significant relation [pooled 1-year OR was 5.07, 95% confidence interval (CI), 3.71–6.94, Q=9.15, I2=0%; pooled 3-year OR was 4.21, 95% CI, 3.18–5.56, Q=14.94, I2=46%; pooled 5-year OR was 5.69, 95% CI, 2.66–12.18, Q=24.83, I2=80%]. Subgroup analysis of RCC patients showed remarkable association between SAA and shorter OS (pooled 1-year OR =4.76, 95% CI, 3.00–7.56, Q=4.18, I2=4%; pooled 3-year OR =4.89, 95% CI, 3.06–7.81, Q=2.88, I2=0%). Conclusions High SAA status is correlated with an unfavorable OS in different cancers, especially in RCC, and digestive cancer.
Collapse
Affiliation(s)
- Yucheng Lai
- Department of Gynecology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuting Li
- The Search Lab of 3D Bioprinting (The State Key Laboratory of Fluid Power and Mechatronic System and the Oxford Centre for Tissue Engineering and Bioprocessing), College of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Leilei Gao
- Department of Gynecology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
5
|
The ectoenzyme-side of matrix metalloproteinases (MMPs) makes inflammation by serum amyloid A (SAA) and chemokines go round. Immunol Lett 2018; 205:1-8. [PMID: 29870759 DOI: 10.1016/j.imlet.2018.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
Abstract
During an inflammatory response, a large number of distinct mediators appears in the affected tissues or in the blood circulation. These include acute phase proteins such as serum amyloid A (SAA), cytokines and chemokines and proteolytic enzymes. Although these molecules are generated within a cascade sequence in specific body compartments allowing for independent action, their co-appearance in space and time during acute or chronic inflammation points toward important mutual interactions. Pathogen-associated molecular patterns lead to fast induction of the pro-inflammatory endogenous pyrogens, which are evoking the acute phase response. Interleukin-1, tumor necrosis factor-α and interferons simultaneously trigger different cell types, including leukocytes, endothelial cells and fibroblasts for tissue-specific or systemic production of chemokines and matrix metalloproteinases (MMPs). In addition, SAA induces chemokines and both stimulate secretion of MMPs from multiple cell types. As a consequence, these mediators may cooperate to enhance the inflammatory response. Indeed, SAA synergizes with chemokines to increase chemoattraction of monocytes and granulocytes. On the other hand, MMPs post-translationally modify chemokines and SAA to reduce their activity. Indeed, MMPs internally cleave SAA with loss of its cytokine-inducing and direct chemotactic potential whilst retaining its capacity to synergize with chemokines in leukocyte migration. Finally, MMPs truncate chemokines at their NH2- or COOH-terminal end, resulting in reduced or enhanced chemotactic activity. Therefore, the complex interactions between chemokines, SAA and MMPs either maintain or dampen the inflammatory response.
Collapse
|
6
|
Liao Z, Wan Q, Xiao X, Ji J, Su J. A systematic investigation on the composition, evolution and expression characteristics of chemokine superfamily in grass carp Ctenopharyngodon idella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:72-82. [PMID: 29325765 DOI: 10.1016/j.dci.2018.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
Chemokines are a superfamily of small cytokines and characterized based on their ability to induce directional migration of cells along a concentration gradient by binding to chemokine receptors, which have important roles in immunology and development. Due to the numerous and diverse members, systematic identifications of chemokine superfamily genes are difficult in many species. To that end, a comprehensive analysis of BLAST and scripting language was conducted to systematically identify and characterize chemokine system in grass carp (Ctenopharyngodon idella). Our results showed that C. idella chemokine superfamily consists of 81 chemokines and 37 receptors, in which, most genes possess typical structural features of the chemokine superfamily. Phylogenetic analyses confirmed the existence of three chemokine subfamilies (CC, CXC and XC) in C. idella and revealed their homologous relationships with other species. Chemokine receptors are transmembrane receptors and contains CCR, CXCR, XCR and ACKR subfamilies. mRNA expression analyses of chemokine superfamily genes indicated that many members are sustainably expressed in multiple tissues before and after grass carp reovirus (GCRV) or Aeromonas hydrophila infection, which provides in vivo evidence for the response patterns after viral or bacterial infection. Meanwhile, this study also explored the evolution of chemokine system from arthropod to higher vertebrates and then investigated the changes in gene number/diversification, gene organization and encoded proteins during vertebrate evolution. These results will serve the further functional and evolutional studies on chemokine superfamily.
Collapse
Affiliation(s)
- Zhiwei Liao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China
| | - Quanyuan Wan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun Xiao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China
| | - Jianfei Ji
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China
| | - Jianguo Su
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China.
| |
Collapse
|
7
|
Tiberio L, Del Prete A, Schioppa T, Sozio F, Bosisio D, Sozzani S. Chemokine and chemotactic signals in dendritic cell migration. Cell Mol Immunol 2018; 15:346-352. [PMID: 29563613 DOI: 10.1038/s41423-018-0005-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells responsible for the activation of specific T-cell responses and for the development of immune tolerance. Immature DCs reside in peripheral tissues and specialize in antigen capture, whereas mature DCs reside mostly in the secondary lymphoid organs where they act as antigen-presenting cells. The correct localization of DCs is strictly regulated by a large variety of chemotactic and nonchemotactic signals that include bacterial products, DAMPs (danger-associated molecular patterns), complement proteins, lipids, and chemokines. These signals function both individually and in concert, generating a complex regulatory network. This network is regulated at multiple levels through different strategies, such as synergistic interactions, proteolytic processing, and the actions of atypical chemokine receptors. Understanding this complex scenario will help to clarify the role of DCs in different pathological conditions, such as autoimmune diseases and cancers and will uncover new molecular targets for therapeutic interventions.
Collapse
Affiliation(s)
- Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Institute, Rozzano-Milano, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Institute, Rozzano-Milano, Italy
| | - Francesca Sozio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Institute, Rozzano-Milano, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvano Sozzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy. .,Humanitas Clinical and Research Institute, Rozzano-Milano, Italy.
| |
Collapse
|
8
|
De Buck M, Gouwy M, Wang JM, Van Snick J, Opdenakker G, Struyf S, Van Damme J. Structure and Expression of Different Serum Amyloid A (SAA) Variants and their Concentration-Dependent Functions During Host Insults. Curr Med Chem 2017; 23:1725-55. [PMID: 27087246 PMCID: PMC5405626 DOI: 10.2174/0929867323666160418114600] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/31/2016] [Accepted: 04/15/2016] [Indexed: 12/23/2022]
Abstract
Serum amyloid A (SAA) is, like C-reactive protein (CRP), an acute phase protein and can be used as a diagnostic, prognostic or therapy follow-up marker for many diseases. Increases in serum levels of SAA are triggered by physical insults to the host, including infection, trauma, inflammatory reactions and cancer. The order of magnitude of increase in SAA levels varies considerably, from a 10- to 100-fold during limited inflammatory events to a 1000-fold increase during severe bacterial infections and acute exacerbations of chronic inflammatory diseases. This broad response range is reflected by SAA gene duplications resulting in a cluster encoding several SAA variants and by multiple biological functions of SAA. SAA variants are single-domain proteins with simple structures and few post-translational modifications. SAA1 and SAA2 are inducible by inflammatory cytokines, whereas SAA4 is constitutively produced. We review here the regulated expression of SAA in normal and transformed cells and compare its serum levels in various disease states. At low concentrations (10-100 ng/ml), early in an inflammatory response, SAA induces chemokines or matrix degrading enzymes via Toll-like receptors and functions as an activator and chemoattractant through a G protein-coupled receptor. When an infectious or inflammatory stimulus persists, the liver continues to produce more SAA (> 1000 ng/ml) to become an antimicrobial agent by functioning as a direct opsonin of bacteria or by interference with virus infection of host cells. Thus, SAA regulates innate and adaptive immunity and this information may help to design better drugs to treat specific diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jo Van Damme
- University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| |
Collapse
|
9
|
ATP increases the migration of microglia across the brain endothelial cell monolayer. Biosci Rep 2016; 36:BSR20160054. [PMID: 26934979 PMCID: PMC5293564 DOI: 10.1042/bsr20160054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/26/2016] [Indexed: 11/17/2022] Open
Abstract
To elucidate the mechanism of microglial migration across the blood–brain barrier (BBB), we developed an in vitro co-culture system and analysed real-time BBB integrity during transmigration. We show that ATP promotes microglia transmigration via a mechanism involving microglial matrix metalloproteinases (MMPs). The cerebral microcapillary endothelium, known as the blood–brain barrier (BBB), acts as a barrier between the blood and the interstitial fluid of the brain. The BBB therefore controls the passage of nutrients into the central nervous system (CNS). Microglia show a specific affinity for migration into the CNS, and this migration appears to occur independently of BBB integrity. To study the migration of microglia across the BBB, we developed an in vitro co-culture system of mouse brain endothelial cells (MBECs) and Ra2 microglia using Transwell inserts. We first investigated the influence of microglia or ATP, a microglial chemotactic factor, on MBEC barrier integrity. The addition of microglia or ATP led to the disruption of the MBEC monolayer and significantly decreased barrier function as measured by trans-endothelial electrical resistance (TEER) and electric cell–substrate impedance sensing (ECIS). Furthermore, ATP promoted the migration of microglia but not macrophages across the MBEC monolayer. An inhibitor of matrix metalloproteinases (MMPs) decreased the transmigration of microglia in our system, indicating that MMPs play a role in microglial chemotaxis. We specifically identify a role for microglia-derived MMP-2. In conclusion, we offer evidence that microglia migration across the brain endothelial cell monolayer is increased in the presence of ATP in a manner that involves MMP secretion.
Collapse
|
10
|
Mazzon C, Zanotti L, Wang L, Del Prete A, Fontana E, Salvi V, Poliani PL, Sozzani S. CCRL2 regulates M1/M2 polarization during EAE recovery phase. J Leukoc Biol 2016; 99:1027-33. [PMID: 26744451 DOI: 10.1189/jlb.3ma0915-444rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/23/2015] [Indexed: 12/31/2022] Open
Abstract
Chemokine (CC motif) receptor-like 2 is a 7-transmembrane protein related to the family of the atypical chemokine receptors, which are proteins devoid of chemotactic activity and involved in the control of inflammation. Experimental autoimmune encephalitis is an autoimmune disorder that replicates the inflammatory aspects of multiple sclerosis. Chemokine (CC motif) receptor-like 2-deficient mice developed exacerbated, nonresolving disease with protracted inflammatory response and increased demyelination. The increased severity of the disease was associated with higher levels of microglia/macrophage activation markers and imbalanced M1/M2 polarization. Thus, chemokine (CC motif) receptor-like 2 is involved in the downregulation of central nervous system-associated experimental autoimmune encephalitis inflammation in the recovery phase of the disease. Therefore chemokine (CC motif) receptor-like 2 should be considered to be a molecule involved in the regulation of the inflammatory response associated with multiple sclerosis.
Collapse
Affiliation(s)
- Cristina Mazzon
- Department of Molecular and Translational Medicine, University of Brescia, Italy; and Humanitas Clinical and Research Center, Rozzano, Italy
| | - Lucia Zanotti
- Humanitas Clinical and Research Center, Rozzano, Italy
| | - Li Wang
- Humanitas Clinical and Research Center, Rozzano, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Italy; and Humanitas Clinical and Research Center, Rozzano, Italy
| | - Elena Fontana
- Department of Molecular and Translational Medicine, University of Brescia, Italy; and
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Italy; and
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, University of Brescia, Italy; and
| | - Silvano Sozzani
- Department of Molecular and Translational Medicine, University of Brescia, Italy; and Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|
11
|
Sozzani S, Del Prete A, Bonecchi R, Locati M. Chemokines as effector and target molecules in vascular biology. Cardiovasc Res 2015; 107:364-72. [PMID: 25969393 DOI: 10.1093/cvr/cvv150] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/26/2015] [Indexed: 12/13/2022] Open
Abstract
Chemokines are key mediators of inflammation. In pathological tissues, the main roles of chemokines are to regulate leucocyte accumulation through the activation of oriented cell migration and the activation of limited programs of gene transcription. Through these activities, chemokines exert many crucial functions, including the regulation of angiogenesis. The 'chemokine system' is tightly regulated at several levels, such as the post-transcriptional processing of ligands, the regulation of the expression and function of the receptors and through the expression of molecules known as 'atypical chemokine receptors', proteins that function as chemokine scavenging and presenting molecules. Several experimental evidence obtained in vitro, in animal models and in human studies, has defined a crucial role of chemokines in cardiovascular diseases. An intense area of research is currently exploring the possibility to develop new effective therapeutic strategies through the identification of chemokine receptor antagonists.
Collapse
Affiliation(s)
- Silvano Sozzani
- Department of Molecular and Translational Medicine, Viale Europa, 11, University of Brescia, Brescia 25123, Italy Humanitas Clinical and Research Center, Rozzano, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, Viale Europa, 11, University of Brescia, Brescia 25123, Italy Humanitas Clinical and Research Center, Rozzano, Italy
| | - Raffaella Bonecchi
- Humanitas Clinical and Research Center, Rozzano, Italy Humanitas University, Rozzano, Italy
| | - Massimo Locati
- Humanitas Clinical and Research Center, Rozzano, Italy Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|