1
|
Li Y, Zhang S, Liu J, Zhang Y, Zhang N, Cheng Q, Zhang H, Wu X. The pentraxin family in autoimmune disease. Clin Chim Acta 2023; 551:117592. [PMID: 37832905 DOI: 10.1016/j.cca.2023.117592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The pentraxins represent a family of multifunctional proteins composed of long and short pentamers. The latter includes serum amyloid P component (SAP) and C-reactive protein (CRP) whereas the former includes neuronal PTX1 and PTX2 (NPTX1 and NPTX2, respectively), PTX3 and PTX4. These serve as a bridge between adaptive immunity and innate immunity and a link between inflammation and immunity. Similarities and differences between long and short pentamers are examined and their roles in autoimmune disease are discussed. Increased CRP and PTX3 could indicate the activity of rheumatoid arthritis, systemic lupus erythematosus or other autoimmune diseases. Mechanistically, CRP and PTX3 may predict target organ injury, regulate bone metabolic immunity and maintain homeostasis as well as participate in vascular endothelial remodeling. Interestingly, PTX3 is pleiotropic, being involved in inflammation and tissue repair. Given the therapeutic potential of PTX3 and CRP, targeting these factors to exert a beneficial effect is the focus of research efforts. Unfortunately, studies on NPTX1, NPTX2, PTX4 and SAP are scarce and more research is clearly needed to elaborate their potential roles in autoimmune disease.
Collapse
Affiliation(s)
- Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Shouzan Zhang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, PR China
| | - Jingqi Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yudi Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, PR China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China.
| | - Xiaochuan Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
2
|
Manzarinejad M, Vahidi Z, Boostani R, Khadem-Rezaiyan M, Rafatpanah H, Zemorshidi F. Pentraxin 3, a serum biomarker in human T-cell lymphotropic virus type-1-associated myelopathy patients and asymptomatic carriers. Med Microbiol Immunol 2023:10.1007/s00430-023-00770-z. [PMID: 37278849 DOI: 10.1007/s00430-023-00770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/27/2023] [Indexed: 06/07/2023]
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) can induce a neuroinflammatory condition that leads to myelopathy. Pentraxin 3 (PTX3) is an acute-phase protein that its plasma concentration increases during inflammation. We aimed to determine whether PTX3 serum level is elevated in HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients and HTLV-1 asymptomatic carriers (ACs) and evaluate its association with proviral load and clinical features. The serum level of PTX3 was measured using an enzyme-linked immunosorbent assay in 30 HAM patients, 30 HTLV-1 ACs, and 30 healthy controls. Also, the HTLV-1 proviral load was determined via real-time PCR technique. The findings showed that PTX3 serum level was significantly higher in HAM patients than in both asymptomatic carriers and healthy controls (p values < 0.0001). No correlation between PTX3 and the proviral load was observed in HAM patients and asymptomatic carriers (r = - 0.238, p = 0.205 and r = - 0.078, p = 0.681, respectively). The findings showed that there was no significant correlation between PTX3 and motor disability grading (MDG) (r = - 0.155, p = 0.41) nor urinary disturbance score (UDS) (r = - 0.238, p = 0.20). Higher levels of PTX3 are associated with HTLV-1-associated myelopathy compared to asymptomatic carriers. This finding may support the idea that PTX3 has the potential as a diagnostic biomarker.
Collapse
Affiliation(s)
| | - Zohreh Vahidi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Boostani
- Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khadem-Rezaiyan
- Department of Community Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Rheumatic Disease Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Zemorshidi
- Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
You SF, Brase L, Filipello F, Iyer AK, Del-Aguila J, He J, D’Oliveira Albanus R, Budde J, Norton J, Gentsch J, Dräger NM, Sattler SM, Kampmann M, Piccio L, Morris JC, Perrin RJ, McDade E, Paul SM, Cashikar AG, Benitez BA, Harari O, Karch CM. MS4A4A modifies the risk of Alzheimer disease by regulating lipid metabolism and immune response in a unique microglia state. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.06.23285545. [PMID: 36798226 PMCID: PMC9934804 DOI: 10.1101/2023.02.06.23285545] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Genome-wide association studies (GWAS) have identified many modifiers of Alzheimer disease (AD) risk enriched in microglia. Two of these modifiers are common variants in the MS4A locus (rs1582763: protective and rs6591561: risk) and serve as major regulators of CSF sTREM2 levels. To understand their functional impact on AD, we used single nucleus transcriptomics to profile brains from carriers of these variants. We discovered a "chemokine" microglial subpopulation that is altered in MS4A variant carriers and for which MS4A4A is the major regulator. The protective variant increases MS4A4A expression and shifts the chemokine microglia subpopulation to an interferon state, while the risk variant suppresses MS4A4A expression and reduces this subpopulation of microglia. Our findings provide a mechanistic explanation for the AD variants in the MS4A locus. Further, they pave the way for future mechanistic studies of AD variants and potential therapeutic strategies for enhancing microglia resilience in AD pathogenesis.
Collapse
Affiliation(s)
- Shih-Feng You
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Logan Brase
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Fabia Filipello
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Abhirami K. Iyer
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Jorge Del-Aguila
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - June He
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | | | - John Budde
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Joanne Norton
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Jen Gentsch
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Nina M. Dräger
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Sydney M. Sattler
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Laura Piccio
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
- Charles Perkins Centre and Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - John C. Morris
- Department of Neurology, Washington University in St. Louis School of Medicine, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard J. Perrin
- Department of Neurology, Washington University in St. Louis School of Medicine, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eric McDade
- Department of Neurology, Washington University in St. Louis School of Medicine, USA
| | | | - Steven M. Paul
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Anil G. Cashikar
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Bruno A. Benitez
- Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Celeste M. Karch
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Coltrini D, Chandran AMK, Belleri M, Poliani PL, Cominelli M, Pagani F, Capra M, Calza S, Prioni S, Mauri L, Prinetti A, Kofler JK, Escolar ML, Presta M. β-Galactosylceramidase Deficiency Causes Upregulation of Long Pentraxin-3 in the Central Nervous System of Krabbe Patients and Twitcher Mice. Int J Mol Sci 2022; 23:ijms23169436. [PMID: 36012705 PMCID: PMC9409448 DOI: 10.3390/ijms23169436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Globoid cell leukodystrophy (GLD), or Krabbe disease, is a neurodegenerative sphingolipidosis caused by genetic deficiency of lysosomal β-galactosylceramidase (GALC), characterized by neuroinflammation and demyelination of the central (CNS) and peripheral nervous system. The acute phase protein long pentraxin-3 (PTX3) is a soluble pattern recognition receptor and a regulator of innate immunity. Growing evidence points to the involvement of PTX3 in neurodegeneration. However, the expression and role of PTX3 in the neurodegenerative/neuroinflammatory processes that characterize GLD remain unexplored. Here, immunohistochemical analysis of brain samples from Krabbe patients showed that macrophages and globoid cells are intensely immunoreactive for PTX3. Accordingly, Ptx3 expression increases throughout the course of the disease in the cerebrum, cerebellum, and spinal cord of GALC-deficient twitcher (Galctwi/twi) mice, an authentic animal model of GLD. This was paralleled by the upregulation of proinflammatory genes and M1-polarized macrophage/microglia markers and of the levels of PTX3 protein in CNS and plasma of twitcher animals. Crossing of Galctwi/twi mice with transgenic PTX3 overexpressing animals (hPTX3 mice) demonstrated that constitutive PTX3 overexpression reduced the severity of clinical signs and the upregulation of proinflammatory genes in the spinal cord of P35 hPTX3/Galctwi/twi mice when compared to Galctwi/twi littermates, leading to a limited increase of their life span. However, this occurred in the absence of a significant impact on the histopathological findings and on the accumulation of the neurotoxic metabolite psychosine when evaluated at this late time point of the disease. In conclusion, our results provide the first evidence that PTX3 is produced in the CNS of GALC-deficient Krabbe patients and twitcher mice. PTX3 may exert a protective role by reducing the neuroinflammatory response that occurs in the spinal cord of GALC-deficient animals.
Collapse
Affiliation(s)
- Daniela Coltrini
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Adwaid Manu Krishna Chandran
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Mirella Belleri
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Pietro L. Poliani
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Manuela Cominelli
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Francesca Pagani
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Miriam Capra
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Stefano Calza
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Julia K. Kofler
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224-1334, USA
| | - Maria L. Escolar
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224-1334, USA
| | - Marco Presta
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
- Correspondence:
| |
Collapse
|
5
|
Bianconi A, Aruta G, Rizzo F, Salvati LF, Zeppa P, Garbossa D, Cofano F. Systematic Review on Tumor Microenvironment in Glial Neoplasm: From Understanding Pathogenesis to Future Therapeutic Perspectives. Int J Mol Sci 2022; 23:4166. [PMID: 35456984 PMCID: PMC9029619 DOI: 10.3390/ijms23084166] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the multidisciplinary management in the treatment of glioblastomas, the average survival of GBM patients is still 15 months. In recent years, molecular biomarkers have gained more and more importance both in the diagnosis and therapy of glial tumors. At the same time, it has become clear that non neoplastic cells, which constitute about 30% of glioma mass, dramatically influence tumor growth, spread, and recurrence. This is the main reason why, in recent years, scientific research has been focused on understanding the function and the composition of tumor microenvironment and its role in gliomagenesis and recurrence. The aim of this review is to summarize the most recent discovery about resident microglia, tumor-associated macrophages, lymphocytes, and the role of extracellular vesicles and their bijective interaction with glioma cells. Moreover, we reported the most recent updates about new therapeutic strategies targeting immune system receptors and soluble factors. Understanding how glioma cells interact with non-neoplastic cells in tumor microenvironment is an essential step to comprehend mechanisms at the base of disease progression and to find new therapeutic strategies for GBM patients. However, no significant results have yet been obtained in studies targeting single molecules/pathways; considering the complex microenvironment, it is likely that only by using multiple therapeutic agents acting on multiple molecular targets can significant results be achieved.
Collapse
Affiliation(s)
- Andrea Bianconi
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | - Gelsomina Aruta
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | - Francesca Rizzo
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | | | - Pietro Zeppa
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | - Diego Garbossa
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | - Fabio Cofano
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
- Spine Surgery Unit, Humanitas Gradeningo, 10100 Turin, Italy
| |
Collapse
|
6
|
Xu W, Qi Y, Gao Y, Quan H, Li Q, Zhou H, Huang J. Benzo(a)pyrene exposure in utero exacerbates Parkinson's Disease (PD)-like α-synucleinopathy in A53T human alpha-synuclein transgenic mice. Toxicol Appl Pharmacol 2021; 427:115658. [PMID: 34332006 DOI: 10.1016/j.taap.2021.115658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 02/09/2023]
Abstract
BACKGROUND Previous work indicated that benzo[a]pyrene (B(a)P) exposure in utero might adversely affect neurodevelopment and cause Parkinson's Disease (PD)-like symptoms. However, the effect of utero exposure to B(a)P on PD-like α-synucleinopathy and the mechanism under are unclear. OBJECTIVE The A53T human alpha-synuclein (α-syn) transgenic mice (M83+/-) were used in this study to gain insights into the role of B(a)P exposure in utero in the onset of α-syn pathology and neuronal damage. METHOD Timed-pregnant M83+/- dams were exposed to 1) corn oil (vehicle) or 2) 5 mg/kg bw/d B(a)P or 3) 20 mg/kg bw/d B(a)P at gestational day 10-17 by oral gavage and then the SNCA transcription, α-syn accumulation and aggregation, neuroinflammation and nigral dopaminergic neurodegeneration of 60-day-old pups were evaluated. RESULT SNCA mRNA and α-syn protein expression in the midbrain of 60 days adult mice were found to be remarkably elevated after B(a)P exposure in utero, the protein degradation capacity was injured (in 20 mg/kg dose group) and α-syn aggregation could be observed in the substantia nigra (SN); Enhanced Iba1 expression in the midbrain and microglial activation (in 20 mg/kg dose group) in the SN were also figured out; Besides, dopaminergic neurons in the SN of 60 days adult mice were significantly decreased. CONCLUSIONS Our findings demonstrated that B(a)P exposure in utero could exacerbate α-syn pathology and induce activation of microglia which might further lead to dopaminergic neuronal loss in the SN.
Collapse
Affiliation(s)
- Weixing Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yuze Qi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yanjun Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Huihui Quan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Qingru Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Hui Zhou
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
7
|
Neuroinflammation: A Signature or a Cause of Epilepsy? Int J Mol Sci 2021; 22:ijms22136981. [PMID: 34209535 PMCID: PMC8267969 DOI: 10.3390/ijms22136981] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Epilepsy can be both a primary pathology and a secondary effect of many neurological conditions. Many papers show that neuroinflammation is a product of epilepsy, and that in pathological conditions characterized by neuroinflammation, there is a higher probability to develop epilepsy. However, the bidirectional mechanism of the reciprocal interaction between epilepsy and neuroinflammation remains to be fully understood. Here, we attempt to explore and discuss the relationship between epilepsy and inflammation in some paradigmatic neurological and systemic disorders associated with epilepsy. In particular, we have chosen one representative form of epilepsy for each one of its actual known etiologies. A better understanding of the mechanistic link between neuroinflammation and epilepsy would be important to improve subject-based therapies, both for prophylaxis and for the treatment of epilepsy.
Collapse
|
8
|
Oggioni M, Mercurio D, Minuta D, Fumagalli S, Popiolek-Barczyk K, Sironi M, Ciechanowska A, Ippati S, De Blasio D, Perego C, Mika J, Garlanda C, De Simoni MG. Long pentraxin PTX3 is upregulated systemically and centrally after experimental neurotrauma, but its depletion leaves unaltered sensorimotor deficits or histopathology. Sci Rep 2021; 11:9616. [PMID: 33953334 PMCID: PMC8100171 DOI: 10.1038/s41598-021-89032-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/13/2021] [Indexed: 02/03/2023] Open
Abstract
Long pentraxin PTX3, a pattern recognition molecule involved in innate immune responses, is upregulated by pro-inflammatory stimuli, contributors to secondary damage in traumatic brain injury (TBI). We analyzed PTX3 involvement in mice subjected to controlled cortical impact, a clinically relevant TBI mouse model. We measured PTX3 mRNA and protein in the brain and its circulating levels at different time point post-injury, and assessed behavioral deficits and brain damage progression in PTX3 KO mice. PTX3 circulating levels significantly increased 1-3 weeks after injury. In the brain, PTX3 mRNA was upregulated in different brain areas starting from 24 h and up to 5 weeks post-injury. PTX3 protein significantly increased in the brain cortex up to 3 weeks post-injury. Immunohistochemical analysis showed that, 48 h after TBI, PTX3 was localized in proximity of neutrophils, likely on neutrophils extracellular traps (NETs), while 1- and 2- weeks post-injury PTX3 co-localized with fibrin deposits. Genetic depletion of PTX3 did not affect sensorimotor deficits up to 5 weeks post-injury. At this time-point lesion volume and neuronal count, axonal damage, collagen deposition, astrogliosis, microglia activation and phagocytosis were not different in KO compared to WT mice. Members of the long pentraxin family, neuronal pentraxin 1 (nPTX1) and pentraxin 4 (PTX4) were also over-expressed in the traumatized brain, but not neuronal pentraxin 2 (nPTX2) or short pentraxins C-reactive protein (CRP) and serum amyloid P-component (SAP). The long-lasting pattern of activation of PTX3 in brain and blood supports its specific involvement in TBI. The lack of a clear-cut phenotype in PTX3 KO mice may depend on the different roles of this protein, possibly involved in inflammation early after injury and in repair processes later on, suggesting distinct functions in acute phases versus sub-acute or chronic phases. Brain long pentraxins, such as PTX4-shown here to be overexpressed in the brain after TBI-may compensate for PTX3 absence.
Collapse
Affiliation(s)
- Marco Oggioni
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Domenico Mercurio
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Denise Minuta
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy ,grid.18887.3e0000000417581884Present Address: San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Hospital, 20132 Milan, Italy
| | - Stefano Fumagalli
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Katarzyna Popiolek-Barczyk
- grid.418903.70000 0001 2227 8271Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Marina Sironi
- Humanitas Clinical and Research Center – IRCCS, via Manzoni 56, Rozzano - Milan, 20089 Italy
| | - Agata Ciechanowska
- grid.418903.70000 0001 2227 8271Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Stefania Ippati
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy ,grid.18887.3e0000000417581884Present Address: San Raffaele Scientific Institute, San Raffaele Hospital, 20132 Milan, Italy
| | - Daiana De Blasio
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Carlo Perego
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Joanna Mika
- grid.418903.70000 0001 2227 8271Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Cecilia Garlanda
- Humanitas Clinical and Research Center – IRCCS, via Manzoni 56, Rozzano - Milan, 20089 Italy ,grid.452490.eHumanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, Pieve Emanuele – Milan, 20090 Italy
| | - Maria-Grazia De Simoni
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| |
Collapse
|
9
|
Verberk SGS, van der Zande HJP, Baardman J, de Goede KE, Harber KJ, Keuning ED, Lambooij JM, Otto F, Zawistowska-Deniziak A, de Vries HE, de Winther MPJ, Guigas B, Van den Bossche J. Myeloid ATP Citrate Lyase Regulates Macrophage Inflammatory Responses In Vitro Without Altering Inflammatory Disease Outcomes. Front Immunol 2021; 12:669920. [PMID: 33981315 PMCID: PMC8107722 DOI: 10.3389/fimmu.2021.669920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
Macrophages are highly plastic, key regulators of inflammation. Deregulation of macrophage activation can lead to excessive inflammation as seen in inflammatory disorders like atherosclerosis, obesity, multiple sclerosis and sepsis. Targeting intracellular metabolism is considered as an approach to reshape deranged macrophage activation and to dampen the progression of inflammatory disorders. ATP citrate lyase (Acly) is a key metabolic enzyme and an important regulator of macrophage activation. Using a macrophage-specific Acly-deficient mouse model, we investigated the role of Acly in macrophages during acute and chronic inflammatory disorders. First, we performed RNA sequencing to demonstrate that Acly-deficient macrophages showed hyperinflammatory gene signatures in response to acute LPS stimulation in vitro. Next, we assessed endotoxin-induced peritonitis in myeloid-specific Acly-deficient mice and show that, apart from increased splenic Il6 expression, systemic and local inflammation were not affected by Acly deficiency. Also during obesity, both chronic low-grade inflammation and whole-body metabolic homeostasis remained largely unaltered in mice with Acly-deficient myeloid cells. Lastly, we show that macrophage-specific Acly deletion did not affect the severity of experimental autoimmune encephalomyelitis (EAE), an experimental model of multiple sclerosis. These results indicate that, despite increasing inflammatory responses in vitro, macrophage Acly deficiency does not worsen acute and chronic inflammatory responses in vivo. Collectively, our results indicate that caution is warranted in prospective long-term treatments of inflammatory disorders with macrophage-specific Acly inhibitors. Together with our earlier observation that myeloid Acly deletion stabilizes atherosclerotic lesions, our findings highlight that therapeutic targeting of macrophage Acly can be beneficial in some, but not all, inflammatory disorders.
Collapse
MESH Headings
- ATP Citrate (pro-S)-Lyase/genetics
- ATP Citrate (pro-S)-Lyase/metabolism
- Animals
- Cells, Cultured
- Cytokines/genetics
- Cytokines/metabolism
- Diet, High-Fat
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/enzymology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Inflammation/enzymology
- Inflammation/etiology
- Inflammation/genetics
- Inflammation/immunology
- Inflammation Mediators/metabolism
- Lipopolysaccharides
- Macrophages/enzymology
- Macrophages/immunology
- Mice, Inbred C57BL
- Mice, Knockout
- Myelin-Oligodendrocyte Glycoprotein
- Obesity/complications
- Peptide Fragments
- Peritonitis/chemically induced
- Peritonitis/enzymology
- Peritonitis/genetics
- Peritonitis/immunology
- Phenotype
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Sanne G. S. Verberk
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Jeroen Baardman
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Kyra E. de Goede
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Karl J. Harber
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Eelco D. Keuning
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joost M. Lambooij
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank Otto
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Anna Zawistowska-Deniziak
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Menno P. J. de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Van den Bossche
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
10
|
Oxidative Stress in Alzheimer's Disease: In Vitro Therapeutic Effect of Amniotic Fluid Stem Cells Extracellular Vesicles. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2785343. [PMID: 33193997 PMCID: PMC7641262 DOI: 10.1155/2020/2785343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is characterized by abnormal protein aggregation, deposition of extracellular β-amyloid proteins (Aβ), besides an increase of oxidative stress. Amniotic fluid stem cells (AFSCs) should have a therapeutic potential for neurodegenerative disorders, mainly through a paracrine effect mediated by extracellular vesicles (EV). Here, we examined the effect of EV derived from human AFSCs (AFSC-EV) on the disease phenotypes in an AD neuron primary culture. We observed a positive effect of AFSC-EV on neuron morphology, viability, and Aβ and phospho-Tau levels. This could be due to the apoptotic and autophagic pathway modulation derived from the decrease in oxidative stress. Indeed, reactive oxygen species (ROS) were reduced, while GSH levels were enhanced. This modulation could be ascribed to the presence of ROS regulating enzymes, such as SOD1 present into the AFSC-EV themselves. This study describes the ROS-modulating effects of extracellular vesicles alone, apart from their deriving stem cell, in an AD in vitro model, proposing AFSC-EV as a therapeutic tool to stop the progression of AD.
Collapse
|
11
|
Effect of combined exercise training on pentraxins and pro- inflammatory cytokines in people with multiple sclerosis as a function of disability status. Cytokine 2020; 134:155196. [DOI: 10.1016/j.cyto.2020.155196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/25/2020] [Accepted: 07/04/2020] [Indexed: 12/17/2022]
|
12
|
Rodríguez-Gómez JA, Kavanagh E, Engskog-Vlachos P, Engskog MK, Herrera AJ, Espinosa-Oliva AM, Joseph B, Hajji N, Venero JL, Burguillos MA. Microglia: Agents of the CNS Pro-Inflammatory Response. Cells 2020; 9:E1717. [PMID: 32709045 PMCID: PMC7407646 DOI: 10.3390/cells9071717] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
The pro-inflammatory immune response driven by microglia is a key contributor to the pathogenesis of several neurodegenerative diseases. Though the research of microglia spans over a century, the last two decades have increased our understanding exponentially. Here, we discuss the phenotypic transformation from homeostatic microglia towards reactive microglia, initiated by specific ligand binding to pattern recognition receptors including toll-like receptor-4 (TLR4) or triggering receptors expressed on myeloid cells-2 (TREM2), as well as pro-inflammatory signaling pathways triggered such as the caspase-mediated immune response. Additionally, new research disciplines such as epigenetics and immunometabolism have provided us with a more holistic view of how changes in DNA methylation, microRNAs, and the metabolome may influence the pro-inflammatory response. This review aimed to discuss our current knowledge of pro-inflammatory microglia from different angles, including recent research highlights such as the role of exosomes in spreading neuroinflammation and emerging techniques in microglia research including positron emission tomography (PET) scanning and the use of human microglia generated from induced pluripotent stem cells (iPSCs). Finally, we also discuss current thoughts on the impact of pro-inflammatory microglia in neurodegenerative diseases.
Collapse
Affiliation(s)
- José A. Rodríguez-Gómez
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Sevilla, Spain
| | - Edel Kavanagh
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Pinelopi Engskog-Vlachos
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institute, 17177 Stockholm, Sweden; (P.E.-V.); (B.J.)
| | - Mikael K.R. Engskog
- Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, 751 23 Uppsala, Sweden;
| | - Antonio J. Herrera
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Ana M. Espinosa-Oliva
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institute, 17177 Stockholm, Sweden; (P.E.-V.); (B.J.)
| | - Nabil Hajji
- Division of Brain Sciences, The John Fulcher Molecular Neuro-Oncology Laboratory, Imperial College London, London W12 ONN, UK;
| | - José L. Venero
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Miguel A. Burguillos
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| |
Collapse
|
13
|
Wu Q, Cao F, Tao J, Li X, Zheng SG, Pan HF. Pentraxin 3: A promising therapeutic target for autoimmune diseases. Autoimmun Rev 2020; 19:102584. [PMID: 32534154 DOI: 10.1016/j.autrev.2020.102584] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/15/2022]
Abstract
Pentraxin 3 (PTX3) is a prototypic humoral soluble pattern recognition molecule that exerts a pivotal role in innate immune response and inflammation, as well as in tissue damage and remodeling. Recently, emerging evidence has revealed that PTX3 is involved in the occurrence and development of various autoimmune diseases, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), ankylosing spondylitis (AS), systemic sclerosis (SSc), inflammatory bowel disease (IBD), multiple sclerosis (MS) and psoriasis, etc. In this review, we have succinctly summarized the complex immunological functions of PTX3 and mostly focused on recent findings of the pleiotropic activities played by PTX3 in the pathogenesis of autoimmune diseases, aiming at hopefully offering possible future therapeutic alternatives.
Collapse
Affiliation(s)
- Qian Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Fan Cao
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaomei Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui, China
| | - Song Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
14
|
Kim JH, Afridi R, Lee WH, Suk K. Proteomic examination of the neuroglial secretome: lessons for the clinic. Expert Rev Proteomics 2020; 17:207-220. [PMID: 32187501 DOI: 10.1080/14789450.2020.1745069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Introduction: Glial cells are closely associated with neurons located throughout the nervous system and regulate neuronal activity and function through various mechanisms including the secretion of proteins and other signaling molecules. Glia-secreted proteins play crucial roles in modulating neuronal function in physiological and pathological conditions. Aberrant activation of glial cells leading to neuroinflammation is a common phenomenon observed in various neurological disorders. Aberrantly activated glial cells secrete proteins in disease-specific manner and can be exploited as a repository for novel biomarker discovery.Areas covered: In this review, we describe the recent advances in proteomic techniques, highlighting the need for their application to the secretomic field. Studies regarding the secretome profile of glial cells published within the last 5 years are discussed in detail. The use of glia-based biomarkers in various neuroinflammatory and neurodegenerative diseases is also discussed.Expert opinion: Precise diagnosis and timely treatment of neurological disorders remains a challenge and glia-focused research to identify specific biomarkers appears to be a promising approach to combat these disorders. Recent technological advancement in proteomic research would open new frontiers for more rigorous analysis of glial secretome variations over time and the discovery/development of novel biomarkers for neurological disorders.
Collapse
Affiliation(s)
- Jong-Heon Kim
- Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Ruqayya Afridi
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea.,Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
15
|
Zheng C, Chen J, Chu F, Zhu J, Jin T. Inflammatory Role of TLR-MyD88 Signaling in Multiple Sclerosis. Front Mol Neurosci 2020; 12:314. [PMID: 31998072 PMCID: PMC6965019 DOI: 10.3389/fnmol.2019.00314] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a neuro-autoimmune and neurodegenerative disorder leading to chronic inflammation, demyelination, axonal, and neuronal loss in the central nervous system (CNS). Despite intense research efforts, the pathogenesis of MS still remains unclear. Toll-like receptors (TLRs) are a family of type I transmembrane receptors that play a crucial role in the innate immune response. Myeloid differentiation factor 88 (MyD88) is the adaptor of major TLRs. It has been widely considered that the TLR-MyD88 signaling pathway plays an important role in the occurrence and development of autoimmune disease. Data have revealed that the TLR-MyD88 signaling may be involved in the pathogenesis of MS and experimental autoimmune encephalomyelitis (EAE), an animal model for MS, by regulating the antigen presentation of dendritic cells, the integrity of blood-brain barrier (BBB), and the activation of T cells and B cells. Here, we summarize the role of TLRs and MyD88 in MS and discuss the possible therapies that are based on these molecules.
Collapse
Affiliation(s)
- Chao Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fengna Chu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Zatta M, Di Bella S, Bottazzi B, Rossi F, D'Agaro P, Segat L, Fabbiani M, Mantovani A, Luzzati R. Determination of pentraxin 3 levels in cerebrospinal fluid during central nervous system infections. Eur J Clin Microbiol Infect Dis 2019; 39:665-670. [PMID: 31813079 DOI: 10.1007/s10096-019-03767-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/08/2019] [Indexed: 11/27/2022]
Abstract
Pentraxin 3 (PTX3) is an acute phase protein; its plasmatic levels significantly rise during severe infections. Data on PTX3 levels in cerebrospinal fluid (CSF) of patients with central nervous system (CNS) infections are lacking. We aimed (a) to assess the diagnostic potential of measuring CSF PTX3 levels in patients with CNS infections and (b) to establish CSF PTX3 cutoffs to distinguish between bacterial and aseptic meningoencephalitis (ROC curve). PTX3 levels were measured in CSF from 19 patients admitted to Trieste Hospital, Italy, with CNS infection. A diagnosis of bacterial infection and aseptic meningoencephalitis was made in 7 (37%) and 12 (63%) patients, respectively. Subjects with bacterial infections showed significantly higher PTX3 levels (13.5 vs 1.27 ng/mL in aseptic meningoencephalitis, p = 0.010). We identified two different CSF PTX3 levels cutoffs. (1) The best cutoff to maximise Youden's J was 9.6 ng/mL with a sensitivity, specificity, positive predictive value and negative predictive value (NPV) of 71.4%, 91.4%, 83.3%, 84.6%, respectively. (2) The cutoff with higher NPV (100%) was 3.6 ng/mL; a diagnosis of bacterial infections was obtained in 0% patients with CSF PTX3 levels < 3.6 ng/mL vs 58% of those with CSF PTX3 levels ≥ 3.6 ng/mL (p = 0.017). CSF PTX3 levels are higher in bacterial meningitis than aseptic meningoencephalitis. A cutoff of 3.6 ng/mL of CSF PTX3 has a high NPV and can be used to exclude bacterial CNS infections.
Collapse
Affiliation(s)
- Marta Zatta
- Department of Infectious Diseases, University Hospital of Trieste, Trieste, Italy.
| | - Stefano Di Bella
- Department of Infectious Diseases, University Hospital of Trieste, Trieste, Italy
| | - Barbara Bottazzi
- IRCCS Humanitas Clinical and Research Center and Humanitas University, Milan, Italy
| | - Francesca Rossi
- Department of Laboratory Medicine, University Hospital of Trieste, Trieste, Italy
| | - Pierlanfranco D'Agaro
- Department Reproductive, Developmental and Public Health Sciences, UCO Hygiene and Preventive Medicine, University of Trieste, Trieste, Italy
| | - Ludovica Segat
- Department Reproductive, Developmental and Public Health Sciences, UCO Hygiene and Preventive Medicine, University of Trieste, Trieste, Italy
| | - Massimiliano Fabbiani
- Department of Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alberto Mantovani
- IRCCS Humanitas Clinical and Research Center and Humanitas University, Milan, Italy
| | - Roberto Luzzati
- Department of Infectious Diseases, University Hospital of Trieste, Trieste, Italy
| |
Collapse
|
17
|
Wang MR, Zhang XJ, Liu HC, Ma WD, Zhang ML, Zhang Y, Li X, Dou MM, Jing YL, Chu YJ, Zhu L. Matrine protects oligodendrocytes by inhibiting their apoptosis and enhancing mitochondrial autophagy. Brain Res Bull 2019; 153:30-38. [DOI: 10.1016/j.brainresbull.2019.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/03/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022]
|
18
|
Toll-Like Receptor 4 Promotes Th17 Lymphocyte Infiltration Via CCL25/CCR9 in Pathogenesis of Experimental Autoimmune Encephalomyelitis. J Neuroimmune Pharmacol 2019; 14:493-502. [PMID: 31065973 DOI: 10.1007/s11481-019-09854-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 04/22/2019] [Indexed: 12/11/2022]
Abstract
Toll-like receptor 4 (TLR4) is a key component in innate immunity and has been linked to central nervous system (CNS) inflammation diseases, such as multiple sclerosis (MS), an inflammatory disorder induced by autoreactive Th17 cells. In our study, we found that TLR4 deficient (TLR4-/-) mice were inadequate to induce experimental autoimmune encephalomyelitis (EAE), characterized by low clinic score and weight loss, alleviative demyelinating, as well as decreased inflammatory cell infiltration in the spinal cord. In the lesion area of EAE mice, loss of TLR4 down-regulated the secretion of inflammatory cytokines and chemokine CCL25. Furthermore, the expression of CCR9 was decreased and chemotactic migration was attenuated in TLR4-/- Th17 cells. Our results demonstrate that TLR4 may mediate Th17 infiltration through CCL25/CCR9 signal during pathogenesis of EAE. Graphical Abstract Immunofluorescent staining of RORγt (green) and CCR9 (red) in spinal cords. TLR4 deficiency down-regulates CCR9 expression in infiltrating lymphocytes.
Collapse
|
19
|
Reza-Zaldivar EE, Hernández-Sapiéns MA, Minjarez B, Gutiérrez-Mercado YK, Márquez-Aguirre AL, Canales-Aguirre AA. Potential Effects of MSC-Derived Exosomes in Neuroplasticity in Alzheimer's Disease. Front Cell Neurosci 2018; 12:317. [PMID: 30319358 PMCID: PMC6165870 DOI: 10.3389/fncel.2018.00317] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/30/2018] [Indexed: 12/23/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia affecting regions of the central nervous system that exhibit synaptic plasticity and are involved in higher brain functions such as learning and memory. AD is characterized by progressive cognitive dysfunction, memory loss and behavioral disturbances of synaptic plasticity and energy metabolism. Cell therapy has emerged as an alternative treatment of AD. The use of adult stem cells, such as neural stem cells and Mesenchymal Stem Cells (MSCs) from bone marrow and adipose tissue, have the potential to decrease cognitive deficits, possibly by reducing neuronal loss through blocking apoptosis, increasing neurogenesis, synaptogenesis and angiogenesis. These processes are mediated primarily by the secretion of many growth factors, anti-inflammatory proteins, membrane receptors, microRNAs (miRNA) and exosomes. Exosomes encapsulate and transfer several functional molecules like proteins, lipids and regulatory RNA which can modify cell metabolism. In the proteomic characterization of the content of MSC-derived exosomes, more than 730 proteins have been identified, some of which are specific cell type markers and others are involved in the regulation of binding and fusion of exosomes with adjacent cells. Furthermore, some factors were found that promote the recruitment, proliferation and differentiation of other cells like neural stem cells. Moreover, within exosomal cargo, a wide range of miRNAs were found, which can control functions related to neural remodeling as well as angiogenic and neurogenic processes. Taking this into consideration, the use of exosomes could be part of a strategy to promote neuroplasticity, improve cognitive impairment and neural replacement in AD. In this review, we describe how exosomes are involved in AD pathology and discuss the therapeutic potential of MSC-derived exosomes mediated by miRNA and protein cargo.
Collapse
Affiliation(s)
- Edwin E Reza-Zaldivar
- Unidad de Evaluación Preclínica, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Mercedes A Hernández-Sapiéns
- Unidad de Evaluación Preclínica, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Benito Minjarez
- Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Guadalajara, Mexico
| | - Yanet K Gutiérrez-Mercado
- Unidad de Evaluación Preclínica, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Ana L Márquez-Aguirre
- Unidad de Evaluación Preclínica, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Alejandro A Canales-Aguirre
- Unidad de Evaluación Preclínica, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico.,Profesor del programa de Maestría en Ciencias de la Salud Ambiental, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
20
|
Roesch S, Rapp C, Dettling S, Herold-Mende C. When Immune Cells Turn Bad-Tumor-Associated Microglia/Macrophages in Glioma. Int J Mol Sci 2018; 19:ijms19020436. [PMID: 29389898 PMCID: PMC5855658 DOI: 10.3390/ijms19020436] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/29/2017] [Accepted: 01/29/2018] [Indexed: 12/31/2022] Open
Abstract
As a substantial part of the brain tumor microenvironment (TME), glioma-associated microglia/macrophages (GAMs) have an emerging role in tumor progression and in controlling anti-tumor immune responses. We review challenges and improvements of cell models and highlight the contribution of this highly plastic cell population to an immunosuppressive TME, besides their well-known functional role regarding glioma cell invasion and angiogenesis. Finally, we summarize first therapeutic interventions to target GAMs and their effect on the immunobiology of gliomas, focusing on their interaction with T cells.
Collapse
Affiliation(s)
- Saskia Roesch
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany.
| | - Carmen Rapp
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany.
| | - Steffen Dettling
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany.
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany.
| |
Collapse
|
21
|
İlgen U, Yayla ME, Düzgün N. Low serum fibroblast growth factor 2 levels not accompanied by increased serum pentraxin 3 levels in patients with systemic sclerosis. Clin Rheumatol 2016; 36:367-372. [PMID: 27878407 DOI: 10.1007/s10067-016-3483-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/25/2016] [Accepted: 11/10/2016] [Indexed: 12/28/2022]
Abstract
There are scarce clinical data regarding serum pentraxin 3 (PTX3) and fibroblast growth factor 2 (FGF2) in patients with systemic sclerosis (SSc). Study was conducted to evaluate serum levels in our SSc cohort. Serum PTX3 and FGF2 concentrations were compared among SSc, disease control (systemic lupus erythematosus (SLE)), and healthy control groups. We also examined the association of serum levels of PTX3 and FGF2 with disease manifestations. Serum PTX3 levels were similarly distributed among SSc (n = 93) and healthy groups (n = 66) (p = 1.00) while PTX3 levels were higher in SLE controls (n = 86) compared to both SSc and healthy groups. PTX3 levels were higher in limited SSc cases compared to diffuse cases (p = 0.016). Median PTX3 levels in SSc cases with lung involvement were lower compared to cases with no lung involvement (p = 0.006). Patients with SSc had significantly lower serum levels of FGF2 compared to SLE and healthy groups. Serum FGF2 concentration was undetectable in 61.3% of cases with SSc while 30.2% of SLE and only 4.5% of healthy cases had undetectable FGF2 levels (p < 0.01). Diffuse and limited SSc cases, as well as cases with and without lung involvement, had similar rates of undetectable serum FGF2 levels (p = 0.15 and p = 0.59, respectively). FGF2 levels were mostly undetectably low in patients with SSc, and serum PTX3 was lower in diffuse SSc and in cases with lung involvement compared to limited SSc and cases with no lung involvement, respectively, in our cohort.
Collapse
Affiliation(s)
- Ufuk İlgen
- Department of Internal Medicine, Ankara University Medical School, İbn-i Sina Hospital, 06100, Sıhhiye, Ankara, Turkey.
| | - Müçteba Enes Yayla
- Department of Internal Medicine, Ankara University Medical School, İbn-i Sina Hospital, 06100, Sıhhiye, Ankara, Turkey
| | - Nurşen Düzgün
- Department of Rheumatology, Ankara University Medical School, İbn-i Sina Hospital, 06100, Sıhhiye, Ankara, Turkey
| |
Collapse
|