1
|
Paulikat AD, Schwudke D, Hammerschmidt S, Voß F. Lipidation of pneumococcal proteins enables activation of human antigen-presenting cells and initiation of an adaptive immune response. Front Immunol 2024; 15:1392316. [PMID: 38711516 PMCID: PMC11070533 DOI: 10.3389/fimmu.2024.1392316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Streptococcus pneumoniae remains a significant global threat, with existing vaccines having important limitations such as restricted serotype coverage and high manufacturing costs. Pneumococcal lipoproteins are emerging as promising vaccine candidates due to their surface exposure and conservation across various serotypes. While prior studies have explored their potential in mice, data in a human context and insights into the impact of the lipid moiety remain limited. In the present study, we examined the immunogenicity of two pneumococcal lipoproteins, DacB and MetQ, both in lipidated and non-lipidated versions, by stimulation of primary human immune cells. Immune responses were assessed by the expression of common surface markers for activation and maturation as well as cytokines released into the supernatant. Our findings indicate that in the case of MetQ lipidation was crucial for activation of human antigen-presenting cells such as dendritic cells and macrophages, while non-lipidated DacB demonstrated an intrinsic potential to induce an innate immune response. Nevertheless, immune responses to both proteins were enhanced by lipidation. Interestingly, following stimulation of dendritic cells with DacB, LipDacB and LipMetQ, cytokine levels of IL-6 and IL-23 were significantly increased, which are implicated in triggering potentially important Th17 cell responses. Furthermore, LipDacB and LipMetQ were able to induce proliferation of CD4+ T cells indicating their potential to induce an adaptive immune response. These findings contribute valuable insights into the immunogenic properties of pneumococcal lipoproteins, emphasizing their potential role in vaccine development against pneumococcal infections.
Collapse
Affiliation(s)
- Antje D. Paulikat
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research, Thematic Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Franziska Voß
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| |
Collapse
|
2
|
Bartlett B, Lee S, Ludewick HP, Siew T, Verma S, Waterer G, Corrales-Medina VF, Dwivedi G. A multiple comorbidities mouse lung infection model in ApoE‑deficient mice. Biomed Rep 2023; 18:21. [PMID: 36846615 PMCID: PMC9944256 DOI: 10.3892/br.2023.1603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/09/2022] [Indexed: 02/09/2023] Open
Abstract
Acute pneumonia is characterised by a period of intense inflammation. Inflammation is now considered to be a key step in atherosclerosis progression. In addition, pre-existing atherosclerotic inflammation is considered to play a role in pneumonia progression and risk. In the present study, a multiple comorbidities murine model was used to study respiratory and systemic inflammation that results from pneumonia in the setting of atherosclerosis. Firstly, a minimal infectious dose of Streptococcus pneumoniae (TIGR4 strain) to produce clinical pneumonia with a low mortality rate (20%) was established. C57Bl/6 ApoE -/- mice were fed a high-fat diet prior to administering intranasally 105 colony forming units of TIGR4 or phosphate-buffered saline (PBS). At days 2, 7 and 28 post inoculation (PI), the lungs of mice were imaged by magnetic resonance imaging (MRI) and positron emission tomography (PET). Mice were euthanised and investigated for changes in lung morphology and changes in systemic inflammation using ELISA, Luminex assay and real-time PCR. TIGR4-inoculated mice presented with varying degrees of lung infiltrate, pleural effusion and consolidation on MRI at all time points up to 28 days PI. Moreover, PET scans identified significantly higher FDG uptake in the lungs of TIGR4-inoculated mice up to 28 days PI. The majority (90%) TIGR4-inoculated mice developed pneumococcal-specific IgG antibody response at 28 days PI. Consistent with these observations, TIGR4-inoculated mice displayed significantly increased inflammatory gene expression [interleukin (IL)-1β and IL-6] in the lungs and significantly increased levels of circulating inflammatory protein (CCL3) at 7 and 28 days PI respectively. The mouse model developed by the authors presents a discovery tool to understand the link between inflammation related to acute infection such as pneumonia and increased risk of cardiovascular disease observed in humans.
Collapse
Affiliation(s)
- Benjamin Bartlett
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia 6150, Australia
- School of Medicine, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Silvia Lee
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia 6150, Australia
- Department of Microbiology, Pathwest Laboratory Medicine, Perth, Western Australia 6000, Australia
| | - Herbert P. Ludewick
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia 6150, Australia
- Heart and Lung Research Institute, Harry Perkins Institute of Medical Research, Perth, Western Australia 6150, Australia
| | - Teck Siew
- Department of Nuclear Medicine, Fiona Stanley Hospital, Perth, Western Australia 6150, Australia
- Royal Perth Hospital, Perth, Western Australia 6000, Australia
| | - Shipra Verma
- Department of Nuclear Medicine, Fiona Stanley Hospital, Perth, Western Australia 6150, Australia
- Department of Geriatric Medicine, Fiona Stanley Hospital, Perth, Western Australia 6150, Australia
| | - Grant Waterer
- School of Medicine, The University of Western Australia, Perth, Western Australia 6009, Australia
- Royal Perth Hospital, Perth, Western Australia 6000, Australia
| | - Vicente F. Corrales-Medina
- Department of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Girish Dwivedi
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia 6150, Australia
- School of Medicine, The University of Western Australia, Perth, Western Australia 6009, Australia
- Department of Cardiology, Fiona Stanley Hospital, Perth, Western Australia 6150, Australia
| |
Collapse
|
3
|
Audshasai T, Coles JA, Panagiotou S, Khandaker S, Scales HE, Kjos M, Baltazar M, Vignau J, Brewer JM, Kadioglu A, Yang M. Streptococcus pneumoniae Rapidly Translocate from the Nasopharynx through the Cribriform Plate to Invade the Outer Meninges. mBio 2022; 13:e0102422. [PMID: 35924840 PMCID: PMC9426477 DOI: 10.1128/mbio.01024-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
The entry routes and translocation mechanisms of microorganisms or particulate materials into the central nervous system remain obscure We report here that Streptococcus pneumoniae (pneumococcus), or polystyrene microspheres of similar size, appear in the meninges of the dorsal cortex of mice within minutes of inhaled delivery. Recovery of viable bacteria from dissected tissue and fluorescence microscopy show that up to at least 72 h, pneumococci and microspheres were predominantly found in the outer of the two meninges: the pachymeninx. No pneumococci were found in blood or cerebrospinal fluid. Intravital imaging through the skull, aligned with flow cytometry showed recruitment and activation of LysM+ cells in the dorsal pachymeninx at 5 and 10 hours following intranasal infection. Imaging of the cribriform plate suggested that both pneumococci and microspheres entered through the foramina via an inward flow of fluid connecting the nose to the pachymeninx. Our findings bring new insight into the varied mechanisms of pneumococcal invasion of the central nervous system, but they are also pertinent to the delivery of drugs to the brain and the entry of airborne particulate matter into the cranium. IMPORTANCE Using two-photon imaging, we show that pneumococci translocate from the nasopharynx to the dorsal meninges of a mouse in the absence of any bacteria found in blood or cerebrospinal fluid. Strikingly, this takes place within minutes of inhaled delivery of pneumococci, suggesting the existence of an inward flow of fluid connecting the nasopharynx to the meninges, rather than a receptor-mediated mechanism. We also show that this process is size dependent, as microspheres of the same size as pneumococci can translocate along the same pathway, while larger size microspheres cannot. Furthermore, we describe the host response to invasion of the outer meninges. Our study provides a completely new insight into the key initial events that occur during the translocation of pneumococci directly from the nasal cavity to the meninges, with relevance to the development of intranasal drug delivery systems and the investigations of brain damage caused by inhaled air pollutants.
Collapse
Affiliation(s)
- Teerawit Audshasai
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Jonathan A. Coles
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Stavros Panagiotou
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Shadia Khandaker
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Hannah E. Scales
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Murielle Baltazar
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Julie Vignau
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers, Université de Nantes, Nantes, France
| | - James M. Brewer
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Aras Kadioglu
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Marie Yang
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
4
|
Mouse IgG2a Antibodies Specific for the Commensal Streptococcus mitis Show Stronger Cross-Reactivity with Streptococcus pneumoniae than IgG1 Antibodies. J Immunol Res 2019; 2019:7906724. [PMID: 31583259 PMCID: PMC6754875 DOI: 10.1155/2019/7906724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/17/2019] [Indexed: 11/17/2022] Open
Abstract
Here we show that mouse IgG2a and IgG1 antibodies specific for the commensal Streptococcus mitis cross-react with pathogen Streptococcus pneumoniae serotypes 2 and 4, although the cross-reactivity conferred by IgG2a is stronger than that by IgG1 antibodies. These findings may be important for understanding the S. mitis-induced IgG isotype responses and have consequences for the development of an effective pneumococcal vaccine.
Collapse
|
5
|
Abstract
Streptococcus pneumoniae remains the most common bacterial pathogen causing lower respiratory tract infections and is a leading cause of morbidity and mortality worldwide, especially in children and the elderly. Another important aspect related to pneumococcal infections is the persistent rate of penicillin and macrolide resistance. Therefore, animal models have been developed to better understand the pathogenesis of pneumococcal disease and test new therapeutic agents and vaccines. This narrative review will focus on the characteristics of the different animal pneumococcal pneumonia models. The assessment of the different animal models will include considerations regarding pneumococcal strains, microbiology properties, procedures used for bacterial inoculation, pathogenesis, clinical characteristics, diagnosis, treatment, and preventive approaches.
Collapse
|
6
|
Lippmann T, Braubach P, Ettinger M, Kuehnel M, Laenger F, Jonigk D. Fluorescence in Situ Hybridization (FISH) for the Diagnosis of Periprosthetic Joint Infection in Formalin-Fixed Paraffin-Embedded Surgical Tissues. J Bone Joint Surg Am 2019; 101:e5. [PMID: 30653049 DOI: 10.2106/jbjs.18.00243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND As the number of arthroplasties performed increases, periprosthetic joint infection (PJI) represents a common and challenging problem. The Musculoskeletal Infection Society (MSIS) recommends diagnosing PJI according to its guidelines. The aim of the current study was to assess whether fluorescence in situ hybridization (FISH) analysis of formalin-fixed paraffin-embedded periprosthetic membranes can successfully improve the diagnosis of infection in patients with orthopaedic implants. METHODS We retrospectively analyzed 88 periprosthetic membranes of joint prostheses using FISH analysis according to a standard protocol, with a probe targeting a sequence found in most bacteria. We compared the results with routine clinical classification according to the guidelines of the MSIS, microbiological culture, and histopathological classification according to Morawietz and Krenn. We additionally performed FISH analysis using 2 species-specific probes for several culture-positive cases. RESULTS FISH successfully detected bacteria in 38 (95%) of 40 periprosthetic membranes that were rated positive by clinical classification. FISH results compared with clinical classification demonstrated a sensitivity of 95% (95% confidence interval [CI], 83.08% to 99.39%), a specificity of 85.42% (95% CI, 72.24% to 93.93%), a positive predictive value of 84.44% (95% CI, 70.55% to 93.50%), and a negative predictive value of 95.35% (95% CI, 84.19% to 99.43%). FISH results compared with histopathological classification demonstrated a sensitivity of 95.12% (95% CI, 83.47% to 99.40%), a specificity of 87.23% (95% CI, 74.26% to 95.17%), a positive predictive value of 86.67% (95% CI, 73.21% to 94.95%), and a negative predictive value of 95.35% (95% CI, 84.19% to 99.43%). We successfully detected Pseudomonas aeruginosa and Staphylococcus aureus with species-specific FISH probes in all cases that were positive for these respective bacteria by microbiological culture. CONCLUSIONS FISH-based diagnosis of PJI is feasible and can be used as an additional diagnostic criterion. FISH not only can detect bacteria in periprosthetic membranes but can also differentiate pathogens at the species level. FISH represents a fast and reliable tool for detecting PJI in periprosthetic membranes, especially in combination with clinical and histopathological classification. LEVEL OF EVIDENCE Diagnostic Level III. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Torsten Lippmann
- Institute of Pathology (T.L., P.B., M.K., F.L., and D.J.) and Department of Orthopaedic Surgery (M.E.), Hannover Medical School (MHH), Hannover, Germany
| | - Peter Braubach
- Institute of Pathology (T.L., P.B., M.K., F.L., and D.J.) and Department of Orthopaedic Surgery (M.E.), Hannover Medical School (MHH), Hannover, Germany
| | - Max Ettinger
- Institute of Pathology (T.L., P.B., M.K., F.L., and D.J.) and Department of Orthopaedic Surgery (M.E.), Hannover Medical School (MHH), Hannover, Germany
| | - Mark Kuehnel
- Institute of Pathology (T.L., P.B., M.K., F.L., and D.J.) and Department of Orthopaedic Surgery (M.E.), Hannover Medical School (MHH), Hannover, Germany
| | - Florian Laenger
- Institute of Pathology (T.L., P.B., M.K., F.L., and D.J.) and Department of Orthopaedic Surgery (M.E.), Hannover Medical School (MHH), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (Deutsches Zentrum für Lungenforschung [DZL]), Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology (T.L., P.B., M.K., F.L., and D.J.) and Department of Orthopaedic Surgery (M.E.), Hannover Medical School (MHH), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (Deutsches Zentrum für Lungenforschung [DZL]), Hannover, Germany
| |
Collapse
|
7
|
Dommaschk A, Lang LF, Maus R, Stolper J, Welte T, Maus UA. Colonization-induced protection against invasive pneumococcal disease in mice is independent of CD103 driven adaptive immune responses. Eur J Immunol 2018; 48:965-974. [PMID: 29543979 DOI: 10.1002/eji.201747236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/22/2018] [Accepted: 03/08/2018] [Indexed: 11/09/2022]
Abstract
Nasopharyngeal colonization with Streptococcus pneumoniae (the pneumococcus) is known to mount protective adaptive immune responses in rodents and humans. However, the cellular response of the nasopharyngeal compartment to pneumococcal colonization and its importance for the ensuing adaptive immune response is only partially defined. Here we show that nasopharyngeal colonization with S. pneumoniae triggered substantial expansion of both integrin αE (CD103) positive dendritic cells (DC) and T lymphocytes in nasopharynx, nasal-associated lymphoid tissue (NALT) and cervical lymph nodes (CLN) of WT mice. However, nasopharyngeal de-colonization and pneumococcus-specific antibody responses were similar between WT and CD103 KO mice or Batf3 KO mice. Also, naïve WT mice passively immunized with antiserum from previously colonized WT and CD103 KO mice were similarly protected against invasive pneumococcal disease (IPD). In summary, the data show that CD103 is dispensable for pneumococcal colonization-induced adaptive immune responses in mice.
Collapse
Affiliation(s)
- Anne Dommaschk
- Department of Experimental Pneumology, Hannover School of Medicine, Hannover, Germany
| | - Lara F Lang
- Department of Experimental Pneumology, Hannover School of Medicine, Hannover, Germany
| | - Regina Maus
- Department of Experimental Pneumology, Hannover School of Medicine, Hannover, Germany
| | - Jennifer Stolper
- Department of Experimental Pneumology, Hannover School of Medicine, Hannover, Germany
| | - Tobias Welte
- Clinic for Pneumology, Hannover School of Medicine, Hannover, Germany.,German Center for Lung Research, partner site BREATH, Hannover, Germany
| | - Ulrich A Maus
- Department of Experimental Pneumology, Hannover School of Medicine, Hannover, Germany.,German Center for Lung Research, partner site BREATH, Hannover, Germany
| |
Collapse
|
8
|
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that play a pivotal role in the pathogenesis of periodontitis. The use of animal models to study the role of DCs in periodontitis has been limited by lack of a method for sustained depletion of DCs. Hence, the objectives of this study were to validate the zDC-DTR knockin mouse model of conventional DCs (cDCs) depletion, as well as to investigate whether this depletion could be sustained long enough to induce alveolar bone loss in this model. zDC-DTR mice were treated with different dose regimens of diphtheria toxin (DT) to determine survival rate. A loading DT dose of 20ng/bw, followed and maintained with doses of 10ng/bm every 3days for up to 4weeks demonstrated 80% survival. Animals were weighed weekly and peripheral blood was obtained to confirm normal neutrophil counts. Five animals per group were euthanized at baseline, 24h, 1 and 4weeks. Bone marrow (BM), spleen (SP) and gingival tissue (GT) were harvested, and cells were isolated, separated and stained for Pre-DCs precursors (CD45R-MHCII+CD11c+Flt3+CD172a+) in BM, cDCs (CD11c+MHCII+CD209+) in spleen, and DCs in GT (CD45R+MHCII+CD11c+ DC-SIGN/CD209+). Pre-DCs in BM were significantly depleted at 24h and depletion maintained for up to 4weeks, as compared to blank (PBS) controls. Circulating cDCs in spleen demonstrated a non-significant trend to deplete in 1week with high variability among mice. GT also showed a similar non-significant trend to deplete in 24h. The zDC-DTR model seems to be viable for evaluating the role of DCs immune homeostasis disruption and alveolar bone loss pathogenesis in response to long-term oral infection.
Collapse
|