1
|
Deng M, Chen H, Liu X, Huang R, He Y, Yoo B, Xie J, John S, Zhang N, An Z, Zhang CC. Leukocyte immunoglobulin-like receptor subfamily B: therapeutic targets in cancer. Antib Ther 2021; 4:16-33. [PMID: 33928233 PMCID: PMC7944505 DOI: 10.1093/abt/tbab002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1–5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs that recruit phosphatases to negatively regulate immune activation. The activation of LILRB signaling in immune cells may contribute to immune evasion. In addition, the expression and signaling of LILRBs in cancer cells especially in certain hematologic malignant cells directly support cancer development. Certain LILRBs thus have dual roles in cancer biology—as immune checkpoint molecules and tumor-supporting factors. Here, we review the expression, ligands, signaling, and functions of LILRBs, as well as therapeutic development targeting them. LILRBs may represent attractive targets for cancer treatment, and antagonizing LILRB signaling may prove to be effective anti-cancer strategies.
Collapse
Affiliation(s)
- Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan Huang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yubo He
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Byounggyu Yoo
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel John
- Department of Pediatrics, Pediatric Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Xu Z, Lin CC, Ho S, Vlad G, Suciu-Foca N. Suppression of Experimental Autoimmune Encephalomyelitis by ILT3.Fc. THE JOURNAL OF IMMUNOLOGY 2020; 206:554-565. [PMID: 33361206 DOI: 10.4049/jimmunol.2000265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the CNS that is characterized by demyelination, axonal loss, gliosis, and inflammation. The murine model of MS is the experimental autoimmune encephalopathy (EAE) induced by immunization of mice with myelin oligodendrocyte glycoprotein (MOG)35-55 Ig-like transcript 3 (ILT3) is an inhibitory cell surface receptor expressed by tolerogenic human dendritic cells. In this study, we show that the recombinant human ILT3.Fc protein binds to murine immune cells and inhibits the release of proinflammatory cytokines that cause the neuroinflammatory process that result in paralysis. Administration of ILT3.Fc prevents the rapid evolution of the disease in C57BL/6 mice and is associated with a profound reduction of proliferation of MOG35-55-specific Th1 and Th17 cells. Inhibition of IFN-γ and IL-17A in mice treated with ILT3.Fc is associated with delayed time of onset of the disease and its evolution to a peak clinical score. Neuropathological analysis shows a reduction in inflammatory infiltrates and demyelinated areas in the brains and spinal cords of treated mice. These results indicate that inhibition of Th1 and Th17 development provides effective suppression of EAE and suggests the feasibility of a clinical approach based on the use of ILT3.Fc for treatment of MS. Furthermore, our results open the way to further studies on the effect of the human ILT3.Fc protein in murine experimental models of autoimmunity and cancer.
Collapse
Affiliation(s)
- Zheng Xu
- Division of Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032; and
| | - Chun-Chieh Lin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Sophey Ho
- Division of Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032; and
| | - George Vlad
- Division of Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032; and
| | - Nicole Suciu-Foca
- Division of Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032; and
| |
Collapse
|
3
|
Saghari M, Gal P, Ziagkos D, Burggraaf J, Powell JF, Brennan N, Rissmann R, van Doorn MBA, Moerland M. A randomized controlled trial with a delayed-type hypersensitivity model using keyhole limpet haemocyanin to evaluate adaptive immune responses in man. Br J Clin Pharmacol 2020; 87:1953-1962. [PMID: 33025648 PMCID: PMC8056735 DOI: 10.1111/bcp.14588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 01/12/2023] Open
Abstract
AIMS Keyhole limpet haemocyanin (KLH) immunization is a clinical model for the evaluation of human antibody responses. The current study evaluated the anti-KLH antibody response after KLH immunization and the delayed-type hypersensitivity response following intradermal KLH administration, using objective imaging techniques. METHODS Healthy male subjects aged 24.5 ± 5.4 years were randomized to intramuscular immunization with 100 μg KLH (n = 12) or placebo (n = 3). Anti-KLH antibody (Ig) M and IgG titres were determined before and every 7 days after KLH immunization for a total of 28 days. Twenty-one days after the immunization, all subjects received 1 μg KLH intradermally. Prior to and 2 days after intradermal KLH administration, skin blood perfusion, erythema and oedema were quantified using noninvasive imaging tools. Repeated measures ANCOVAs were used to analyse data. RESULTS Anti-KLH IgM and IgG titres increased after KLH immunization compared to placebo (estimated difference [ED]: 37%, 95% confidence interval [CI]: 19-51% and ED: 68%, 95% CI: 56-76% respectively). Upon intradermal KLH administration an increase in skin blood perfusion (ED: 10.9 arbitrary units (AU), 95% CI: 1.4-20.4 AU) and erythema (ED: 0.3 AU, 95% CI: 0.1-0.5 AU) was observed in KLH-immunized subjects compared to placebo. CONCLUSION KLH immunization followed by intradermal KLH administration resulted in increased anti-KLH IgM and IgG titres and a delayed-type hypersensitivity response quantified by an increase in skin blood perfusion and erythema. Using noninvasive imaging tools the KLH model has the potential to serve as an objective tool to study the pharmacodynamics of T-cell-directed immunomodulatory drugs.
Collapse
Affiliation(s)
- Mahdi Saghari
- Centre for Human Drug Research, Leiden, the Netherlands.,Leiden University Medical Centre, Leiden, the Netherlands
| | - Pim Gal
- Centre for Human Drug Research, Leiden, the Netherlands.,Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden, the Netherlands.,Leiden University Medical Centre, Leiden, the Netherlands.,Leiden Academic Centre for Drug Research, Leiden, the Netherlands
| | | | | | - Robert Rissmann
- Centre for Human Drug Research, Leiden, the Netherlands.,Leiden University Medical Centre, Leiden, the Netherlands.,Leiden Academic Centre for Drug Research, Leiden, the Netherlands
| | | | - Matthijs Moerland
- Centre for Human Drug Research, Leiden, the Netherlands.,Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
4
|
Rothe K, Quandt D, Köhler G, Jasinski-Bergner S, Seliger B, Pierer M, Wagner U. PIR-B expressing CD8+ T cells exhibit features of Tc1 and Tc17 in SKG mice. Rheumatology (Oxford) 2020; 58:2325-2329. [PMID: 31257448 DOI: 10.1093/rheumatology/kez256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/14/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE In autoimmune arthritis, TCR signalling is attenuated by peripheral tolerance mechanisms. We have described previously a population of inhibitory receptor LIR-1 expressing autoreactive CD8+ T cells in rheumatoid arthritis. Here, we investigated the role of CD8+ T cells in murine autoimmune arthritis by analysing their expression of the mouse orthologue of LIR-1, PIR-B. METHODS Frequencies of PIR-B+CD8+ T cells were determined in the SKG arthritis model. The phenotype of those cells was determined ex vivo by FACS and functionality was investigated by means of cytokine production and cytolytic potential upon activation in vitro. RESULTS SKG mice, under non-SPF (specific pathogen-free) conditions with clinical symptoms of arthritis, were found to harbour significantly increased frequencies of PIR-B+CD8+ T cells. Those cells showed a pro-inflammatory phenotype with preferential production of IL-17 and IFN-γ. The frequency of those cells correlated inversely with the arthritis score, indicating that they might represent autoreactive, but functionally inhibited, CD8+ T cells. CONCLUSION PIR-B+CD8+ T cells from SKG mice show a cytotoxic and pro-inflammatory phenotype. Inhibition of CD8+ T cell autoreactivity by PIR-B/LIR-1 receptor signalling might be a counter-regulatory mechanism to curb autoreactivity and arthritis.
Collapse
Affiliation(s)
- Kathrin Rothe
- University of Leipzig, Department of Internal Medicine, Division of Rheumatology, Liebigstr, Leipzig, Germany
| | - Dagmar Quandt
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | - Simon Jasinski-Bergner
- Institute for Medical Immunology, Martin Luther University Halle- Wittenberg, Halle, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle- Wittenberg, Halle, Germany
| | - Matthias Pierer
- University of Leipzig, Department of Internal Medicine, Division of Rheumatology, Liebigstr, Leipzig, Germany
| | - Ulf Wagner
- University of Leipzig, Department of Internal Medicine, Division of Rheumatology, Liebigstr, Leipzig, Germany
| |
Collapse
|
5
|
Sanghera C, Wong LM, Panahi M, Sintou A, Hasham M, Sattler S. Cardiac phenotype in mouse models of systemic autoimmunity. Dis Model Mech 2019; 12:dmm036947. [PMID: 30858306 PMCID: PMC6451423 DOI: 10.1242/dmm.036947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Patients suffering from systemic autoimmune diseases are at significant risk of cardiovascular complications. This can be due to systemically increased levels of inflammation leading to accelerated atherosclerosis, or due to direct damage to the tissues and cells of the heart. Cardiac complications include an increased risk of myocardial infarction, myocarditis and dilated cardiomyopathy, valve disease, endothelial dysfunction, excessive fibrosis, and bona fide autoimmune-mediated tissue damage by autoantibodies or auto-reactive cells. There is, however, still a considerable need to better understand how to diagnose and treat cardiac complications in autoimmune patients. A range of inducible and spontaneous mouse models of systemic autoimmune diseases is available for mechanistic and therapeutic studies. For this Review, we systematically collated information on the cardiac phenotype in the most common inducible, spontaneous and engineered mouse models of systemic lupus erythematosus, rheumatoid arthritis and systemic sclerosis. We also highlight selected lesser-known models of interest to provide researchers with a decision framework to choose the most suitable model for their study of heart involvement in systemic autoimmunity.
Collapse
Affiliation(s)
- Chandan Sanghera
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Lok Man Wong
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Mona Panahi
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Amalia Sintou
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Muneer Hasham
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
6
|
The Role of Flavonoids in Inhibiting Th17 Responses in Inflammatory Arthritis. J Immunol Res 2018; 2018:9324357. [PMID: 29693024 PMCID: PMC5859886 DOI: 10.1155/2018/9324357] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022] Open
Abstract
Flavonoids have been considered powerful anti-inflammatory agents, and their exact immunomodulatory action as therapeutic agents in autoimmune diseases has started to emerge. Their role in the manipulation of immunoregulation is less understood. Several studies attempted to investigate the role of various flavonoids mainly in experimental models of autoimmune diseases, especially in the context of their potential effect on the increase of regulatory T cells (Tregs) and their ability to stimulate an overexpression of anti-inflammatory cytokines, in particular that of IL-10. The emergence of IL-17, a cytokine largely produced by Th17 cells, as a powerful proinflammatory stimulus which attenuates the induction of Tregs has prompted a series of studies investigating the role of flavonoids on Th17 cells in experimental models as well as human autoimmune diseases. This review thoroughly discusses accumulated data on the role of flavonoids on Th17 in rheumatoid arthritis and experimental autoimmune arthritis.
Collapse
|