1
|
Kciuk M, Garg A, Rohilla M, Chaudhary R, Dhankhar S, Dhiman S, Bansal S, Saini M, Singh TG, Chauhan S, Mujwar S, Gielecińska A, Kontek R. Therapeutic Potential of Plant-Derived Compounds and Plant Extracts in Rheumatoid Arthritis-Comprehensive Review. Antioxidants (Basel) 2024; 13:775. [PMID: 39061843 PMCID: PMC11274232 DOI: 10.3390/antiox13070775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a persistent autoimmune disorder that is characterized by joint inflammation, discomfort, and impairment. Despite the existence of several therapeutic approaches, their effectiveness is often restricted and may be linked to unfavorable side effects. Consequently, there has been growing interest in investigating naturally derived compounds as plausible therapeutic agents for RA disease. The objective of this review is to summarize the existing preclinical and clinical evidence regarding the efficacy of naturally extracted compounds and plant extracts in the treatment of RA, focusing on their anti-inflammatory, anti-oxidative, and immunomodulatory properties. Some of the problems with using natural chemicals are the uneven quality of commercially available preparations and the poor bioavailability of these compounds. Future investigations should focus on improving the formulations, conducting thorough clinical trials, and exploring different techniques to fully utilize the intrinsic potential of naturally derived chemicals in treating RA.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha St. 12/16, 90-237 Lodz, Poland
| | - Anjali Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
- Swami Devi Dyal College of Pharmacy, Golpura Barwala, Panchkula 134118, Haryana, India
| | - Manni Rohilla
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur 140601, Punjab, India
| | - Rishabh Chaudhary
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133206, Haryana, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Sachin Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Seema Bansal
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133206, Haryana, India
| | - Monika Saini
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur 140601, Punjab, India
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133206, Haryana, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha St. 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha St. 12/16, 90-237 Lodz, Poland
| |
Collapse
|
2
|
Martínez-Ramos S, García S. An update of murine models and their methodologies in immune-mediated joint damage and pain research. Int Immunopharmacol 2024; 128:111440. [PMID: 38176343 DOI: 10.1016/j.intimp.2023.111440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Murine models have played an indispensable role in the understanding of rheumatic and musculoskeletal disorders (RMD), elucidating the genetic, endocrine and biomechanical pathways involved in joint pathology and associated pain. To date, the available models in RMD can be classified as induced or spontaneous, both incorporating transgenic alternatives that improve specific insights. It is worth noting that the selection of the most appropriate model together with the evaluation of their specific characteristics and technical capabilities are crucial when designing the experiments. Furthermore, it is also imperative to consistently adhere to the ethical standards concerning animal experimentation. Recognizing the inherent limitation that any model can entirely encapsulates the complexity of the pathophysiology of these conditions, the aim of this review is to provide an updated overview on the methodology of current murine models in major arthropathies and their immune-mediated pathways, addressing to basic, translational and pharmacological research in joint damage and pain.
Collapse
Affiliation(s)
- Sara Martínez-Ramos
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain; Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain.
| | - Samuel García
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain; Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| |
Collapse
|
3
|
Morrin AS, Eastham S, Williams AS, Jones GW. Tracking Cardiovascular Comorbidity in Models of Chronic Inflammatory Disease. Methods Mol Biol 2023; 2691:123-137. [PMID: 37355542 DOI: 10.1007/978-1-0716-3331-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Immune-mediated inflammatory diseases (IMIDs) are commonly associated with complex coexisting conditions, and cardiovascular comorbidities are a common cause of mortality in systemic inflammation. Experimental models of disease provide an opportunity to dissect inflammatory mechanisms that promote damage to vascular tissues affected by comorbidity. Here, we describe methods to recover the thoracic aorta from mice during experimental inflammatory arthritis and assess vascular constriction responses by isometric tension myography. To complement the assessment of functional changes in the vasculature during inflammatory arthritis, we also outline a method to characterize vascular inflammation by immunohistochemistry.
Collapse
Affiliation(s)
- Aisling S Morrin
- Division of Infection and Immunity, and Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Simon Eastham
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Anwen S Williams
- Division of Infection and Immunity, and Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Gareth W Jones
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, UK.
| |
Collapse
|
4
|
Chidomere CI, Wahid M, Kemble S, Chadwick C, Thomas R, Hardy RS, McGettrick HM, Naylor AJ. Bench to Bedside: Modelling Inflammatory Arthritis. DISCOVERY IMMUNOLOGY 2022; 2:kyac010. [PMID: 38567064 PMCID: PMC10917191 DOI: 10.1093/discim/kyac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 04/04/2024]
Abstract
Inflammatory arthritides such as rheumatoid arthritis are a major cause of disability. Pre-clinical murine models of inflammatory arthritis continue to be invaluable tools with which to identify and validate therapeutic targets and compounds. The models used are well-characterised and, whilst none truly recapitulates the human disease, they are crucial to researchers seeking to identify novel therapeutic targets and to test efficacy during preclinical trials of novel drug candidates. The arthritis parameters recorded during clinical trials and routine clinical patient care have been carefully standardised, allowing comparison between centres, trials, and treatments. Similar standardisation of scoring across in vivo models has not occurred, which makes interpretation of published results, and comparison between arthritis models, challenging. Here, we include a detailed and readily implementable arthritis scoring system, that increases the breadth of arthritis characteristics captured during experimental arthritis and supports responsive and adaptive monitoring of disease progression in murine models of inflammatory arthritis. In addition, we reference the wider ethical and experimental factors researchers should consider during the experimental design phase, with emphasis on the continued importance of replacement, reduction, and refinement of animal usage in arthritis research.
Collapse
Affiliation(s)
- Chiamaka I Chidomere
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mussarat Wahid
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Samuel Kemble
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Caroline Chadwick
- Biomedical Services Unit, University of Birmingham, Birmingham, B15 2TT, UK
| | - Richard Thomas
- Biomedical Services Unit, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rowan S Hardy
- Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Helen M McGettrick
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Amy J Naylor
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
5
|
Maleitzke T, Weber J, Hildebrandt A, Dietrich T, Zhou S, Tsitsilonis S, Keller J. Standardized protocol and outcome measurements for the collagen antibody-induced arthritis mouse model. STAR Protoc 2022; 3:101718. [PMID: 36152302 PMCID: PMC9519592 DOI: 10.1016/j.xpro.2022.101718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/01/2022] [Accepted: 08/29/2022] [Indexed: 01/26/2023] Open
Abstract
The murine collagen antibody-induced arthritis (CAIA) model resembles various features of human rheumatoid arthritis and is based on the intraperitoneal or intravenous injection of autoantibodies against type II collagen. Here, we present a standardized protocol for the intraperitoneal injection of arthritis-inducing autoantibodies in mice, followed by a description of daily arthritis assessments. We then detail the steps to harvest joint and bone tissues for histological, radiological, and molecular analyses. We highlight animal welfare and 3R considerations for experimental arthritis studies. For complete details on the use and execution of this protocol, please refer to Maleitzke et al. (2021, 2022).
Collapse
Affiliation(s)
- Tazio Maleitzke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, 10178 Berlin, Germany
| | - Jérôme Weber
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Alexander Hildebrandt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Tamara Dietrich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Sijia Zhou
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Serafeim Tsitsilonis
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
6
|
Correa LB, Pádua TA, Alabarse PVG, Saraiva EM, Garcia EB, Amendoeira FC, Ferraris FK, Fukada SY, Rosas EC, Henriques MG. Protective effect of methyl gallate on murine antigen-induced arthritis by inhibiting inflammatory process and bone erosion. Inflammopharmacology 2022; 30:251-266. [PMID: 35112275 DOI: 10.1007/s10787-021-00922-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022]
Abstract
Methyl gallate (MG) is a plant-derived phenolic compound known to present remarkable anti-inflammatory effect in different experimental models, such as paw oedema, pleurisy, zymosan-induced arthritis and colitis. Herein we investigated the effect of MG in the mice model of antigen-induced arthritis (AIA), a model with complex inflammatory response, driven primally by immune process and that cause bone and cartilage erosion similarly found in rheumatoid arthritis. Arthritis was induced by intra-articular injection of albumin methylated from bovine serum (mBSA) in C57BL/6 male mice previously immunized. The dose-response analysis of MG (0.7-70 mg/kg; p.o) showed that maximum inhibition was reached with the dose of 7 mg/kg on paw oedema and cell infiltration induced by AIA at 7 h. Treatment with MG (7 mg/kg; p.o) or with the positive control, dexamethasone (Dexa, 10 mg/kg, ip) reduced AIA oedema formation, leukocyte infiltration, release of extracellular DNA and cytokine production 7 and 24 h (acute response). Mice treated daily with MG for 7 days showed no significant weight loss or liver and kidney toxicity contrary to dexamethasone that induced some degree of toxicity. Prolonged treatment with MG inhibited the late inflammatory response (28 days) reducing oedema formation, cell infiltration, synovial hyperplasia, pannus formation and cartilage degradation as observed in histopathological analyses. Ultimately, MG reduced bone resorption as evidenced by a decrease in tartrate-resistant acid phosphate (TRAP)-positive cells number in femur histology. Altogether, we demonstrate that MG ameliorates the inflammatory reaction driven primarily by the immune process, suggesting a potential therapeutic application in arthritis treatment.
Collapse
Affiliation(s)
- Luana Barbosa Correa
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Tatiana Almeida Pádua
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Paulo Vinicius Gil Alabarse
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Elvira Maria Saraiva
- Laboratory of Immunobiology of Leishmaniasis, Department of Immunology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Esdras Barbosa Garcia
- Laboratory of Pharmacology, Department of Pharmacology and Toxicology, National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fabio Coelho Amendoeira
- Laboratory of Pharmacology, Department of Pharmacology and Toxicology, National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fausto Klabund Ferraris
- Laboratory of Pharmacology, Department of Pharmacology and Toxicology, National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Sandra Yasuyo Fukada
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Elaine Cruz Rosas
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria G Henriques
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil. .,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Aarntzen EHJG, Noriega-Álvarez E, Artiko V, Dias AH, Gheysens O, Glaudemans AWJM, Lauri C, Treglia G, van den Wyngaert T, van Leeuwen FWB, Terry SYA. EANM recommendations based on systematic analysis of small animal radionuclide imaging in inflammatory musculoskeletal diseases. EJNMMI Res 2021; 11:85. [PMID: 34487263 PMCID: PMC8421483 DOI: 10.1186/s13550-021-00820-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 11/26/2022] Open
Abstract
Inflammatory musculoskeletal diseases represent a group of chronic and disabling conditions that evolve from a complex interplay between genetic and environmental factors that cause perturbations in innate and adaptive immune responses. Understanding the pathogenesis of inflammatory musculoskeletal diseases is, to a large extent, derived from preclinical and basic research experiments. In vivo molecular imaging enables us to study molecular targets and to measure biochemical processes non-invasively and longitudinally, providing information on disease processes and potential therapeutic strategies, e.g. efficacy of novel therapeutic interventions, which is of complementary value next to ex vivo (post mortem) histopathological analysis and molecular assays. Remarkably, the large body of preclinical imaging studies in inflammatory musculoskeletal disease is in contrast with the limited reports on molecular imaging in clinical practice and clinical guidelines. Therefore, in this EANM-endorsed position paper, we performed a systematic review of the preclinical studies in inflammatory musculoskeletal diseases that involve radionuclide imaging, with a detailed description of the animal models used. From these reflections, we provide recommendations on what future studies in this field should encompass to facilitate a greater impact of radionuclide imaging techniques on the translation to clinical settings.
Collapse
Affiliation(s)
- Erik H J G Aarntzen
- Inflammation and Infection Committee EANM, Vienna, Austria
- Department of Medical Imaging, Radboud University Nijmegen Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Edel Noriega-Álvarez
- Inflammation and Infection Committee EANM, Vienna, Austria
- Department of Nuclear Medicine, General University Hospital of Ciudad Real, Ciudad Real, Spain
| | - Vera Artiko
- Inflammation and Infection Committee EANM, Vienna, Austria
- Center for Nuclear Medicine Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - André H Dias
- Inflammation and Infection Committee EANM, Vienna, Austria
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Olivier Gheysens
- Inflammation and Infection Committee EANM, Vienna, Austria
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc and Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Andor W J M Glaudemans
- Inflammation and Infection Committee EANM, Vienna, Austria.
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen Medical Imaging Center, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Chiara Lauri
- Inflammation and Infection Committee EANM, Vienna, Austria
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Giorgio Treglia
- Inflammation and Infection Committee EANM, Vienna, Austria
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Faculty of Biology and Medicine, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Tim van den Wyngaert
- Bone and Joint Committee EANM, Vienna, Austria
- Antwerp University Hospital Belgium, Edegem, Belgium
- Molecular Imaging Center Antwerp (MICA) - IPPON, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Fijs W B van Leeuwen
- Translational Molecular Imaging and Therapy Committee EANM, Vienna, Austria
- Department of Radiology, Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands
| | - Samantha Y A Terry
- Inflammation and Infection Committee EANM, Vienna, Austria.
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
8
|
Meehan GR, Thomas R, Al Khabouri S, Wehr P, Hilkens CM, Wraith DC, Sieghart D, Bonelli M, Nagy G, Garside P, Tough DF, Lewis HD, Brewer JM. Preclinical models of arthritis for studying immunotherapy and immune tolerance. Ann Rheum Dis 2021; 80:1268-1277. [PMID: 34380700 PMCID: PMC8458054 DOI: 10.1136/annrheumdis-2021-220043] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023]
Abstract
Increasingly earlier identification of individuals at high risk of rheumatoid arthritis (RA) (eg, with autoantibodies and mild symptoms) improves the feasibility of preventing or curing disease. The use of antigen-specific immunotherapies to reinstate immunological self-tolerance represent a highly attractive strategy due to their potential to induce disease resolution, in contrast to existing approaches that require long-term treatment of underlying symptoms. Preclinical animal models have been used to understand disease mechanisms and to evaluate novel immunotherapeutic approaches. However, models are required to understand critical processes supporting disease development such as the breach of self-tolerance that triggers autoimmunity and the progression from asymptomatic autoimmunity to joint pain and bone loss. These models would also be useful in evaluating the response to treatment in the pre-RA period. This review proposes that focusing on immune processes contributing to initial disease induction rather than end-stage pathological consequences is essential to allow development and evaluation of novel immunotherapies for early intervention. We will describe and critique existing models in arthritis and the broader field of autoimmunity that may fulfil these criteria. We will also identify key gaps in our ability to study these processes in animal models, to highlight where further research should be targeted.
Collapse
Affiliation(s)
- Gavin R Meehan
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Ranjeny Thomas
- University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Shaima Al Khabouri
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Pascale Wehr
- University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Catharien Mu Hilkens
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - David C Wraith
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Daniela Sieghart
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - György Nagy
- Department of Rheumatology & Clinical Immunology, Semmelweis University, Budapest, Hungary.,Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Paul Garside
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - David F Tough
- GlaxoSmithKline Research and Development, Stevenage, Hertfordshire, UK
| | - Huw D Lewis
- GlaxoSmithKline Research and Development, Stevenage, Hertfordshire, UK
| | - James M Brewer
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
9
|
Applicability and implementation of the collagen-induced arthritis mouse model, including protocols (Review). Exp Ther Med 2021; 22:939. [PMID: 34335888 PMCID: PMC8290431 DOI: 10.3892/etm.2021.10371] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
Animal models of rheumatoid arthritis (RA) are essential for studying the pathogenesis of RA in vivo and determining the efficacy of anti-RA drugs. During the past decades, numerous rodent models of arthritis have been evaluated as potential models and the modeling methods are relatively well-developed. Among these models, the collagen-induced arthritis (CIA) mouse model is the first choice and the most widely used because it may be generated rapidly and inexpensively and is relatively similar in pathogenesis to human RA. To date, there have been numerous classic studies and reviews discussing related pathogeneses and modeling methods. Based on this knowledge, combined with the latest convenient and effective methods for CIA model construction, the present review aims to introduce the model to beginners and clarify important details regarding its use. Information on the origin and pathogenesis of the CIA model, the protocol for establishing it, the rate of successful arthritis induction and the methods used to evaluate the severity of arthritis are briefly summarized. With this information, it is expected that researchers who have recently entered the field or are not familiar with this information will be able to start quickly, avoid unnecessary errors and obtain reliable results.
Collapse
|
10
|
Huang DN, Wu FF, Zhang AH, Sun H, Wang XJ. Efficacy of berberine in treatment of rheumatoid arthritis: From multiple targets to therapeutic potential. Pharmacol Res 2021; 169:105667. [PMID: 33989762 DOI: 10.1016/j.phrs.2021.105667] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis is a systemic autoimmune disorder involved in persistent synovial inflammation. Berberine is a nature-derived alkaloid compound with multiple pharmacological activities in different pathologies, including RA. Recent experimental studies have clarified several determinant cellular and molecular targets of BBR in RA, and provided novel evidence supporting the promising therapeutic potential of BBR to combat RA. In this review, we recapitulate the therapeutic potential of BBR and its mechanism of action in ameliorating RA, and discuss the modulation of gut microbiota by BBR during RA. Collectively, BBR might be a promising lead drug with multi-functional activities for the therapeutic strategy of RA.
Collapse
Affiliation(s)
- Dan-Na Huang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China
| | - Fang-Fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Xi-Jun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China.
| |
Collapse
|
11
|
Hayer S, Vervoordeldonk MJ, Denis MC, Armaka M, Hoffmann M, Bäcklund J, Nandakumar KS, Niederreiter B, Geka C, Fischer A, Woodworth N, Blüml S, Kollias G, Holmdahl R, Apparailly F, Koenders MI. 'SMASH' recommendations for standardised microscopic arthritis scoring of histological sections from inflammatory arthritis animal models. Ann Rheum Dis 2021; 80:714-726. [PMID: 33602797 PMCID: PMC8142455 DOI: 10.1136/annrheumdis-2020-219247] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/06/2021] [Accepted: 01/21/2021] [Indexed: 11/30/2022]
Abstract
Animal models for inflammatory arthritides such as rheumatoid arthritis (RA) and psoriatic arthritis are widely accepted and frequently used to identify pathological mechanisms and validate novel therapeutic strategies. Unfortunately, many publications reporting on these animal studies lack detailed description and appropriate assessment of the distinct histopathological features of arthritis: joint inflammation, cartilage damage and bone erosion. Therefore, the European consortium BeTheCure, consisting of 38 academic and industrial partners from 15 countries, set as goal to standardise the histological evaluation of joint sections from animal models of inflammatory arthritis. The consensual approach of a task force including 16 academic and industrial scientists as well as laboratory technicians has resulted in the development of the Standardised Microscopic Arthritis Scoring of Histological sections (‘SMASH’) recommendations for a standardised processing and microscopic scoring of the characteristic histopathological features of arthritis, exemplified by four different rodent models for arthritis: murine collagen-induced arthritis, collagen–antibody-induced arthritis, human tumour necrosis factor transgenic Tg197 mice and rat pristane-induced arthritis, applicable to any other inflammatory arthritis model. Through standardisation, the SMASH recommendations are designed to improve and maximise the information derived from in vivo arthritis experiments and to promote reproducibility and transparent reporting on such studies. In this manuscript, we will discuss and provide recommendations for analysis of histological joint sections: identification of the regions of interest, sample preparation, staining procedures and quantitative scoring methods. In conclusion, awareness of the different features of the arthritis pathology in animal models of inflammatory arthritis is of utmost importance for reliable research outcome, and the standardised histological processing and scoring methods in these SMASH recommendations will help increase uniformity and reproducibility in preclinical research on inflammatory arthritis.
Collapse
Affiliation(s)
- Silvia Hayer
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Wien, Austria
| | | | | | - Marietta Armaka
- Department of Immunology, Biomedical Sciences Research Centre 'Alexander Fleming', Vari, Greece
| | - Markus Hoffmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Johan Bäcklund
- Department of Medical Biochemistry and Biophysics, Division of Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Kutty Selva Nandakumar
- Department of Medical Biochemistry and Biophysics, Division of Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Birgit Niederreiter
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Wien, Austria
| | | | - Anita Fischer
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Wien, Austria.,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | | | - Stephan Blüml
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Wien, Austria
| | - George Kollias
- Department of Immunology, Biomedical Sciences Research Centre 'Alexander Fleming', Vari, Greece.,Department of Physiology, Medical School, University of Athens, Athens, Greece
| | - Rikard Holmdahl
- Department of Medical Biochemistry and Biophysics, Division of Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | | | - Marije I Koenders
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Yabe R, Chung SH, Murayama MA, Kubo S, Shimizu K, Akahori Y, Maruhashi T, Seno A, Kaifu T, Saijo S, Iwakura Y. TARM1 contributes to development of arthritis by activating dendritic cells through recognition of collagens. Nat Commun 2021; 12:94. [PMID: 33397982 PMCID: PMC7782728 DOI: 10.1038/s41467-020-20307-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/20/2020] [Indexed: 12/29/2022] Open
Abstract
TARM1 is a member of the leukocyte immunoglobulin-like receptor family and stimulates macrophages and neutrophils in vitro by associating with FcRγ. However, the function of this molecule in the regulation of the immune system is unclear. Here, we show that Tarm1 expression is elevated in the joints of rheumatoid arthritis mouse models, and the development of collagen-induced arthritis (CIA) is suppressed in Tarm1-/- mice. T cell priming against type 2 collagen is suppressed in Tarm1-/- mice and antigen-presenting ability of GM-CSF-induced dendritic cells (GM-DCs) from Tarm1-/- mouse bone marrow cells is impaired. We show that type 2 collagen is a functional ligand for TARM1 on GM-DCs and promotes DC maturation. Furthermore, soluble TARM1-Fc and TARM1-Flag inhibit DC maturation and administration of TARM1-Fc blocks the progression of CIA in mice. These results indicate that TARM1 is an important stimulating factor of dendritic cell maturation and could be a good target for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Rikio Yabe
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
- Medical Mycobiology Research Center, Chiba University, Chiba, Chiba, 260-8673, Japan
| | - Soo-Hyun Chung
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Masanori A Murayama
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Sachiko Kubo
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Kenji Shimizu
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Yukiko Akahori
- Medical Mycobiology Research Center, Chiba University, Chiba, Chiba, 260-8673, Japan
| | - Takumi Maruhashi
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Akimasa Seno
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Tomonori Kaifu
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Shinobu Saijo
- Medical Mycobiology Research Center, Chiba University, Chiba, Chiba, 260-8673, Japan.
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan.
- Medical Mycobiology Research Center, Chiba University, Chiba, Chiba, 260-8673, Japan.
| |
Collapse
|
13
|
Shen P, Jiao Y, Miao L, Chen J, Momtazi‐Borojeni AA. Immunomodulatory effects of berberine on the inflamed joint reveal new therapeutic targets for rheumatoid arthritis management. J Cell Mol Med 2020; 24:12234-12245. [PMID: 32969153 PMCID: PMC7687014 DOI: 10.1111/jcmm.15803] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory syndrome designated by synovial joint inflammation leading to cartilage degradation and bone damage as well as progressive disability. Synovial inflammation is promoted through the infiltration of mononuclear immune cells, dominated by CD4+ T cells, macrophages and dendritic cells (DCs), together with fibroblast-like synoviocytes (FLS), into the synovial compartment. Berberine is a bioactive isoquinoline alkaloid compound showing various pharmacological properties that are mainly attributed to immunomodulatory and anti-inflammatory effects. Several lines of experimental study have recently investigated the therapeutic potential of berberine and its underlying mechanisms in treating RA condition. The present review aimed to clarify determinant cellular and molecular targets of berberine in RA and found that berberine through modulating several signalling pathways involved in the joint inflammation, including PI3K/Akt, Wnt1/β-catenin, AMPK/lipogenesis and LPA/LPA1 /ERK/p38 MAPK can inhibit inflammatory proliferation of FLS cells, suppress DC activation and modulate Th17/Treg balance and thus prevent cartilage and bone destruction. Importantly, these molecular targets may explore new therapeutic targets for RA treatment.
Collapse
Affiliation(s)
- Peng Shen
- Department of StomatologyClinical Department of Aerospace CityNorthern Beijing Medical DistrictChinese PLA General HospitalBeijingChina
| | - Yang Jiao
- Department of StomatologyThe 7th Medical CenterChinese PLA General HospitalBeijingChina
- Outpatient Department of PLA Macao GarrisonMacaoChina
| | - Li Miao
- Department of StomatologyThe 7th Medical CenterChinese PLA General HospitalBeijingChina
| | - Ji‐hua Chen
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Oral DiseasesDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | | |
Collapse
|
14
|
Abstract
Mucosal-associated invariant T (MAIT) cells have been attracting increasing attention over the last few years as a potent unconventional T cell subset. Three factors largely account for this emerging interest. Firstly, these cells are abundant in humans, both in circulation and especially in some tissues such as the liver. Secondly is the discovery of a ligand that has uncovered their microbial targets, and also allowed for the development of tools to accurately track the cells in both humans and mice. Finally, it appears that the cells not only have a diverse range of functions but also are sensitive to a range of inflammatory triggers that can enhance or even bypass T cell receptor–mediated signals—substantially broadening their likely impact in health and disease. In this review we discuss how MAIT cells display antimicrobial, homeostatic, and amplifier roles in vivo, and how this may lead to protection and potentially pathology.
Collapse
Affiliation(s)
- Nicholas M. Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Headington, Oxford OX3 9DU, United Kingdom
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Headington, Oxford OX3 9DU, United Kingdom
- NIHR Biomedical Research Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
15
|
Macrophage M1/M2 polarization and rheumatoid arthritis: A systematic review. Autoimmun Rev 2019; 18:102397. [DOI: 10.1016/j.autrev.2019.102397] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023]
|
16
|
Towards Automatic Rat’s Gait Analysis Under Suboptimal Illumination Conditions. PATTERN RECOGNITION AND IMAGE ANALYSIS 2019. [DOI: 10.1007/978-3-030-31321-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Valencia JC, Egbukichi N, Erwin-Cohen RA. Autoimmunity and Cancer, the Paradox Comorbidities Challenging Therapy in the Context of Preexisting Autoimmunity. J Interferon Cytokine Res 2018; 39:72-84. [PMID: 30562133 DOI: 10.1089/jir.2018.0060] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Today, improvements in diagnostic and therapeutic options allow patients with autoimmune diseases (ADs) to live longer and have more active lives compared with patients receiving conventional anti-inflammatory therapy just two decades ago. Current therapies for ADs aim to inhibit immune cell activation and effector immune pathways, including those activated by cytokines and cytokine receptors. Understandably, such goals become more complicated in patients with long-term established ADs who develop parallel chronic or comorbid conditions, including life-threatening diseases, such as cancer. Compared with the general population, patients with ADs have an increased risk of developing hematological, lymphoproliferative disorders, and solid tumors. However, the aim of current cancer therapies is to activate the immune system to create autoimmune-like conditions and eliminate tumors. As such, their comorbid presentation creates a paradox on how malignancies must be addressed therapeutically in the context of autoimmunity. Because the physiopathology of malignancies is less understood in the context of autoimmunity than it is in the general population, we undertook this review to highlight the peculiarities and mechanisms governing immune cells in established ADs. Moreover, we examined the role of the autoimmune cytokine milieu in the development of immune-related adverse events during the implementation of conventional or immune-based therapy.
Collapse
Affiliation(s)
- Julio C Valencia
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| | - Nkolika Egbukichi
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| | - Rebecca A Erwin-Cohen
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| |
Collapse
|
18
|
Davignon JL, Rauwel B, Degboé Y, Constantin A, Boyer JF, Kruglov A, Cantagrel A. Modulation of T-cell responses by anti-tumor necrosis factor treatments in rheumatoid arthritis: a review. Arthritis Res Ther 2018; 20:229. [PMID: 30314507 PMCID: PMC6235207 DOI: 10.1186/s13075-018-1725-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor (TNF) is a pleiotropic cytokine involved in many aspects of immune regulation. Anti-TNF biological therapy has been considered a breakthrough in the treatment of chronic autoimmune diseases, such as rheumatoid arthritis (RA). In this review, because of the major involvement of T cells in RA pathogenesis, we discuss the effects of anti-TNF biotherapy on T-cell responses in RA patients. We also outline the potential fields for future research in the area of anti-TNF therapy in RA.This could be useful to better understand the therapeutic efficiency and the side effects that are encountered in RA patients. Better targeting of T cells in RA could help set more specific anti-TNF strategies and develop prediction tools for response.
Collapse
Affiliation(s)
- Jean-Luc Davignon
- Centre de Physiopathologie Toulouse Purpan, INSERM-CNRS-UPS, UMR 1043, CHU Purpan, 1 Place Baylac, 31024, Toulouse Cedex, France. .,Centre de Rhumatologie, CHU de Toulouse, 31059, Toulouse, France.
| | - Benjamin Rauwel
- Centre de Physiopathologie Toulouse Purpan, INSERM-CNRS-UPS, UMR 1043, CHU Purpan, 1 Place Baylac, 31024, Toulouse Cedex, France
| | - Yannick Degboé
- Centre de Physiopathologie Toulouse Purpan, INSERM-CNRS-UPS, UMR 1043, CHU Purpan, 1 Place Baylac, 31024, Toulouse Cedex, France.,Centre de Rhumatologie, CHU de Toulouse, 31059, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, 31062, Toulouse, France
| | - Arnaud Constantin
- Centre de Physiopathologie Toulouse Purpan, INSERM-CNRS-UPS, UMR 1043, CHU Purpan, 1 Place Baylac, 31024, Toulouse Cedex, France.,Centre de Rhumatologie, CHU de Toulouse, 31059, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, 31062, Toulouse, France
| | - Jean-Fredéric Boyer
- Centre de Physiopathologie Toulouse Purpan, INSERM-CNRS-UPS, UMR 1043, CHU Purpan, 1 Place Baylac, 31024, Toulouse Cedex, France.,Centre de Rhumatologie, CHU de Toulouse, 31059, Toulouse, France
| | - Andrey Kruglov
- Lomonosov Moscow State University, 119991, Moscow, Russia.,German Rheumatism Research Center (DRFZ), 10117, Berlin, Germany
| | - Alain Cantagrel
- Centre de Physiopathologie Toulouse Purpan, INSERM-CNRS-UPS, UMR 1043, CHU Purpan, 1 Place Baylac, 31024, Toulouse Cedex, France.,Centre de Rhumatologie, CHU de Toulouse, 31059, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, 31062, Toulouse, France
| |
Collapse
|