1
|
Ossendorp F, Ho NI, Van Montfoort N. How B cells drive T-cell responses: A key role for cross-presentation of antibody-targeted antigens. Adv Immunol 2023; 160:37-57. [PMID: 38042585 DOI: 10.1016/bs.ai.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
In this review we discuss an underexposed mechanism in the adaptive immune system where B cell and T cell immunity collaborate. The main function of B cell immunity is the generation of antibodies which are well known for their high affinity and antigen-specificity. Antibodies can bind antigens in soluble form making so-called immune complexes (ICs) or can opsonize antigen-exposing cells or particles for degradation. This leads to well-known effector mechanisms complement activation, antibody-dependent cytotoxicity and phagocytosis. What is less realized is that antibodies can play an important role in the targeting of antigen to dendritic cells (DCs) and thereby can drive T cell immunity. Here we summarize the studies that described this highly efficient process of antibody-mediated antigen uptake in DCs in vitro and in vivo. Only very low doses of antigen can be captured by circulating antibodies and subsequently trapped by DCs in vivo. We studied the handling of these ICs by DCs in subcellular detail. Upon immune complex engulfment DCs can sustain MHC class I and II antigen presentation for many days. Cell biological analysis showed that this function is causally related to intracellular antigen-storage compartments which are functional endolysosomal organelles present in DCs. We speculate that this function is immunologically very important as DCs require time to migrate from the site of infection to the draining lymph nodes to activate T cells. The implications of these findings and the consequences for the immune system, immunotherapy with tumor-specific antibodies and novel vaccination strategies are discussed.
Collapse
Affiliation(s)
- Ferry Ossendorp
- Leiden University Medical Center, department of Immunology, Leiden, The Netherlands.
| | - Nataschja I Ho
- Leiden University Medical Center, department of Immunology, Leiden, The Netherlands
| | - Nadine Van Montfoort
- Leiden University Medical Center, department of Gastroenterology and Hepatology, Leiden, The Netherlands.
| |
Collapse
|
2
|
He X, Wang J, Tang Y, Chiang ST, Han T, Chen Q, Qian C, Shen X, Li R, Ai X. Recent Advances of Emerging Spleen-Targeting Nanovaccines for Immunotherapy. Adv Healthc Mater 2023; 12:e2300351. [PMID: 37289567 DOI: 10.1002/adhm.202300351] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Vaccines provide a powerful tool to modulate the immune system for human disease prevention and treatment. Classical vaccines mainly initiate immune responses in the lymph nodes (LNs) after subcutaneous injection. However, some vaccines suffer from inefficient delivery of antigens to LNs, undesired inflammation, and slow immune induction when encountering the rapid proliferation of tumors. Alternatively, the spleen, as the largest secondary lymphoid organ with a high density of antigen-presenting cells (APCs) and lymphocytes, acts as an emerging target organ for vaccinations in the body. Upon intravenous administration, the rationally designed spleen-targeting nanovaccines can be internalized by the APCs in the spleen to induce selective antigen presentation to T and B cells in their specific sub-regions, thereby rapidly boosting durable cellular and humoral immunity. Herein, the recent advances of spleen-targeting nanovaccines for immunotherapy based on the anatomical architectures and functional zones of the spleen, as well as their limitations and perspectives for clinical applications are systematically summarized. The aim is to emphasize the design of innovative nanovaccines for enhanced immunotherapy of intractable diseases in the future.
Collapse
Affiliation(s)
- Xuanyi He
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Jing Wang
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuqing Tang
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Seok Theng Chiang
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Tianzhen Han
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Qi Chen
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Chunxi Qian
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaoshuai Shen
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Rongxiu Li
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiangzhao Ai
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
3
|
Abstract
The critical role of conventional dendritic cells in physiological cross-priming of immune responses to tumors and pathogens is widely documented and beyond doubt. However, there is ample evidence that a wide range of other cell types can also acquire the capacity to cross-present. These include not only other myeloid cells such as plasmacytoid dendritic cells, macrophages and neutrophils, but also lymphoid populations, endothelial and epithelial cells and stromal cells including fibroblasts. The aim of this review is to provide an overview of the relevant literature that analyzes each report cited for the antigens and readouts used, mechanistic insight and in vivo experimentation addressing physiological relevance. As this analysis shows, many reports rely on the exceptionally sensitive recognition of an ovalbumin peptide by a transgenic T cell receptor, with results that therefore cannot always be extrapolated to physiological settings. Mechanistic studies remain basic in most cases but reveal that the cytosolic pathway is dominant across many cell types, while vacuolar processing is most encountered in macrophages. Studies addressing physiological relevance rigorously remain exceptional but suggest that cross-presentation by non-dendritic cells may have significant impact in anti-tumor immunity and autoimmunity.
Collapse
Affiliation(s)
- François-Xavier Mauvais
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France; Service de Physiologie - Explorations Fonctionnelles Pédiatriques, AP-HP, Hôpital Universitaire Robert Debré, F-75019 Paris, France.
| | - Peter van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France; Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France.
| |
Collapse
|
4
|
Chaib M, Sipe LM, Yarbro JR, Bohm MS, Counts BR, Tanveer U, Pingili AK, Daria D, Marion TN, Carson JA, Thomas PG, Makowski L. PKC agonism restricts innate immune suppression, promotes antigen cross-presentation and synergizes with agonistic CD40 antibody therapy to activate CD8 + T cells in breast cancer. Cancer Lett 2022; 531:98-108. [PMID: 35074498 PMCID: PMC9867936 DOI: 10.1016/j.canlet.2022.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/01/2022] [Accepted: 01/13/2022] [Indexed: 01/26/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are an immature innate cell population that expands in pathological conditions such as cancer and suppresses T cells via production of immunosuppressive factors. Conversely, efficient cytotoxic T cell priming is dependent on the ability of antigen-presenting cells (APCs) to cross-present tumor antigens to CD8+ T cells, a process that requires a specific subtype of dendritic cells (DCs) called conventional DC1 (cDC1) which are often dysfunctional in cancer. One way to activate cDC1 is ligation of CD40 which is abundantly expressed by myeloid cells and its agonism leads to myeloid cell activation. Thus, targeting MDSCs while simultaneously expanding cross-presenting DCs represents a promising strategy that, when combined with agonistic CD40, may result in long-lasting protective immunity. In this study, we investigated the effect of PKC agonists PEP005 and prostratin on MDSC expansion, differentiation, and recruitment to the tumor microenvironment. Our findings demonstrate that PKC agonists decreased MDSC expansion from hematopoietic progenitors and induced M-MDSC differentiation to an APC-like phenotype that expresses cDC1-related markers via activation of the p38 mitogen-activated protein kinase (MAPK) pathway. Simultaneously, PKC agonists favored cDC1 expansion at the expense of cDC2 and plasmacytoid DCs (pDC). Functionally, PKC agonists blunted MDSC suppressive activity and enhanced MDSC cross-priming capacity both in vitro and in vivo. Finally, combination of PKC agonism with agonistic CD40 mAb resulted in a marked reduction in tumor growth with a significant increase in intratumoral activated CD8+ T cells and tissue-resident memory CD8+ T cells in a syngeneic breast cancer mouse model. In sum, this work proposes a novel promising strategy to simultaneously target MDSCs and promote APC function that may have highly impactful clinical relevance in cancer patients.
Collapse
Affiliation(s)
- Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Laura M. Sipe
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Johnathan R. Yarbro
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Margaret S. Bohm
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Brittany R. Counts
- Division of Regenerative and Rehabilitation Sciences, College of Health Professions, UTHSC Memphis, USA
| | - Ubaid Tanveer
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Ajeeth K. Pingili
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Deidre Daria
- Office of Vice Chancellor for Research, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Tony N. Marion
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA,Office of Vice Chancellor for Research, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - James A. Carson
- Division of Regenerative and Rehabilitation Sciences, College of Health Professions, UTHSC Memphis, USA,UTHSC Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Paul G. Thomas
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA,Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA,UTHSC Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Liza Makowski
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA,Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA,Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA,UTHSC Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA,Corresponding author. Cancer Research Building Room 322, UTHSC Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas, Memphis, TN, 38163, USA. (L. Makowski)
| |
Collapse
|
5
|
Lin C, Zhang H, Chen L, Fang Y, Chen J. Immunoregulatory function of Dictyophora echinovolvata spore polysaccharides in immunocompromised mice induced by cyclophosphamide. Open Life Sci 2021; 16:620-629. [PMID: 34183994 PMCID: PMC8218551 DOI: 10.1515/biol-2021-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 11/15/2022] Open
Abstract
The purpose of this study was to investigate whether the Dictyophora echinovolvata spore polysaccharides (DESP) affect the immunity in immunocompromised mice induced by cyclophosphamide (CTX). The healthy female Kunming mice were randomly divided into six groups, including a normal control (NC) group, a positive control group, a model control (MC) group, and three groups treated with low-, intermediate-, and high-dose polysaccharide, respectively. A series of immunoregulatory properties were determined, including humoral and cellular immunity, immune function, and immune factors of mononuclear macrophages. Compared with NC and MC groups, treatment with DESP significantly increased the spleen index and decreased the thymus index; increased the serum concentrations of immunoglobulin (Ig)A, IgG, IgM, hemolysin, IL-1β, and IL-2; delayed the allergic reaction; and improved the splenic lymphocyte transformation ability; and enhanced the phagocytosis of macrophages and the ability to secrete IL-6, TNF-α, caspase-1, and NO with DESP supplementation. These results indicated that DESP might have a good regulatory effect on CTX-induced immunodeficiency in mice, adjust the body’s immune imbalance, and improve the symptoms of low immunity.
Collapse
Affiliation(s)
- Chenqiang Lin
- Fujian Academy of Agricultural Sciences, The Soil and Fertilizer Institute, Fuzhou 350013, People's Republic of China
| | - Hui Zhang
- Fujian Academy of Agricultural Sciences, The Soil and Fertilizer Institute, Fuzhou 350013, People's Republic of China
| | - Longjun Chen
- Fujian Academy of Agricultural Sciences, The Soil and Fertilizer Institute, Fuzhou 350013, People's Republic of China
| | - Yu Fang
- Fujian Academy of Agricultural Sciences, The Soil and Fertilizer Institute, Fuzhou 350013, People's Republic of China
| | - Jichen Chen
- Fujian Academy of Agricultural Sciences, The Soil and Fertilizer Institute, Fuzhou 350013, People's Republic of China
| |
Collapse
|
6
|
Ho NI, Camps MG, Garcia-Vallejo JJ, Bos E, Koster AJ, Verdoes M, van Kooyk Y, Ossendorp F. Distinct antigen uptake receptors route to the same storage compartments for cross-presentation in dendritic cells. Immunology 2021; 164:494-506. [PMID: 34110622 PMCID: PMC8517591 DOI: 10.1111/imm.13382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/21/2021] [Accepted: 06/02/2021] [Indexed: 12/01/2022] Open
Abstract
An exclusive feature of dendritic cells (DCs) is their capacity to present exogenous antigens by MHC class I molecules, called cross‐presentation. Here, we show that protein antigen can be conserved in mature murine DCs for several days in a lysosome‐like storage compartment, distinct from MHC class II and early endosomal compartments, as an internal source for the supply of MHC class I ligands. Using two different uptake routes via Fcγ receptors and C‐type lectin receptors, we could show that antigens were routed towards the same endolysosomal compartments after 48 h. The antigen‐containing compartments lacked co‐expression of molecules involved in MHC class I processing and presentation including TAP and proteasome subunits as shown by single‐cell imaging flow cytometry. Moreover, we observed the absence of cathepsin S but selective co‐localization of active cathepsin X with protein antigen in the storage compartments. This indicates cathepsin S‐independent antigen degradation and a novel but yet undefined role for cathepsin X in antigen processing and cross‐presentation by DCs. In summary, our data suggest that these antigen‐containing compartments in DCs can conserve protein antigens from different uptake routes and contribute to long‐lasting antigen cross‐presentation.
Collapse
Affiliation(s)
- Nataschja I Ho
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel G Camps
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Erik Bos
- Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Center, Leiden, The Netherlands
| | - Abraham J Koster
- Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Ho NI, Camps MGM, Verdoes M, Münz C, Ossendorp F. Autophagy regulates long-term cross-presentation by murine dendritic cells. Eur J Immunol 2021; 51:835-847. [PMID: 33349928 PMCID: PMC8248248 DOI: 10.1002/eji.202048961] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/02/2020] [Accepted: 12/18/2020] [Indexed: 11/21/2022]
Abstract
Autophagy has been reported to be involved in supporting antigen cross-presentation by dendritic cells (DCs). We have shown that DCs have the ability to store antigen for a prolonged time in endolysosomal compartments and thereby sustain MHCI antigen cross-presentation to CD8+ T cells. In the current study, we investigated the role of autophagy in long-term antigen presentation. We show that the autophagy machinery has a negative impact on storage of antigen in DCs. Atg5-/- DCs which are deficient in autophagy or DCs treated with common autophagy inhibitors showed enhanced antigen storage and antigen cross-presentation. This augmented antigen cross-presentation effect is independent of altered proteasome enzyme activity or MHCI surface expression on DCs. We visualized that the storage compartments are in close proximity to LC3 positive autophagosomes. Our results indicate that autophagosomes disrupt antigen storage in DCs and thereby regulate long-term MHCI cross-presentation.
Collapse
Affiliation(s)
- Nataschja I Ho
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel G M Camps
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Wang Z, Li G, Dou S, Zhang Y, Liu Y, Zhang J, Li G, Hou C, Wang R, Shen B, Han G. Tim-3 Promotes Listeria monocytogenes Immune Evasion by Suppressing Major Histocompatibility Complex Class I. J Infect Dis 2020; 221:830-840. [PMID: 31586389 DOI: 10.1093/infdis/jiz512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/02/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND T-cell immunoglobulin and mucin protein 3 (Tim-3) is an immune checkpoint inhibitor that has therapeutic implications for many tumors and infectious diseases. However, the mechanisms by which Tim-3 promotes immune evasion remain unclear. METHODS In this study, we demonstrated that Tim-3 inhibits the expression of major histocompatibility complex class I (MHC-I) in macrophages at both the messenger ribonucleic acid and protein levels by inhibiting the STAT1-NLRC5 signaling pathway. RESULTS As a result, MHC-I-restricted antigen presentation by macrophages was inhibited by Tim-3 both in vitro and in a Listeria monocytogenes infection model in vivo. Systemic overexpression of Tim-3 or specific knockout of Tim-3 in macrophages significantly attenuated or enhanced CD8+ T-cell activation and infection damage in L monocytogenes-infected mice, respectively. CONCLUSIONS Thus, we identified a new mechanism by which Tim-3 promotes L monocytogenes immune evasion. Further studies on this pathway might shed new light on the physio-pathological roles of Tim-3 and suggest new approaches for intervention.
Collapse
Affiliation(s)
- Zhiding Wang
- Institute of Military Cognition and Brain Sciences, Beijing, China
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
- Department of Hematology-Oncology, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen, China
| | - Ge Li
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Shuaijie Dou
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Yanling Zhang
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Yiqiong Liu
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Jiacheng Zhang
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Guoxian Li
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Chunmei Hou
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Renxi Wang
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Beifen Shen
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Gencheng Han
- Institute of Military Cognition and Brain Sciences, Beijing, China
| |
Collapse
|