1
|
Passerini L, Amodio G, Bassi V, Vitale S, Mottola I, Di Stefano M, Fanti L, Sgaramella P, Ziparo C, Furio S, Auricchio R, Barera G, Di Nardo G, Troncone R, Gianfrani C, Gregori S. IL-10-producing regulatory cells impact on celiac disease evolution. Clin Immunol 2024; 260:109923. [PMID: 38316201 PMCID: PMC10905269 DOI: 10.1016/j.clim.2024.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
Celiac Disease (CD) is a T-cell mediated disorder caused by immune response to gluten, although the mechanisms underlying CD progression are still elusive. We analyzed immune cell composition, plasma cytokines, and gliadin-specific T-cell responses in patients with positive serology and normal intestinal mucosa (potential-CD) or villous atrophy (acute-CD), and after gluten-free diet (GFD). We found: an inflammatory signature and the presence of circulating gliadin-specific IFN-γ+ T cells in CD patients regardless of mucosal damage; an increased frequency of IL-10-secreting dendritic cells (DC-10) in the gut and of circulating gliadin-specific IL-10-secreting T cells in potential-CD; IL-10 inhibition increased IFN-γ secretion by gliadin-specific intestinal T cells from acute- and potential-CD. On GFD, inflammatory cytokines normalized, while IL-10-producing T cells accumulated in the gut. We show that IL-10-producing cells are fundamental in controlling pathological T-cell responses to gluten: DC-10 protect the intestinal mucosa from damage and represent a marker of potential-CD.
Collapse
Affiliation(s)
- Laura Passerini
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy
| | - Giada Amodio
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy
| | - Virginia Bassi
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy
| | - Serena Vitale
- Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, Naples 80131, Italy
| | - Ilaria Mottola
- Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, Naples 80131, Italy
| | - Marina Di Stefano
- Department of Paediatrics, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy
| | - Lorella Fanti
- Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy
| | - Paola Sgaramella
- Department of Paediatrics, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy
| | - Chiara Ziparo
- NESMOS Department, School of Medicine and Psychology, Sapienza University of Rome, Sant' Andrea University Hospital, Via di Grottarossa 1035, Rome 00189, Italy
| | - Silvia Furio
- NESMOS Department, School of Medicine and Psychology, Sapienza University of Rome, Sant' Andrea University Hospital, Via di Grottarossa 1035, Rome 00189, Italy
| | - Renata Auricchio
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), Department of Translational Medical Science, Section of Pediatrics, Via Pansini 5, University Federico II, Naples 80131, Italy
| | - Graziano Barera
- Department of Paediatrics, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy
| | - Giovanni Di Nardo
- NESMOS Department, School of Medicine and Psychology, Sapienza University of Rome, Sant' Andrea University Hospital, Via di Grottarossa 1035, Rome 00189, Italy
| | - Riccardo Troncone
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), Department of Translational Medical Science, Section of Pediatrics, Via Pansini 5, University Federico II, Naples 80131, Italy
| | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, Naples 80131, Italy
| | - Silvia Gregori
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy.
| |
Collapse
|
2
|
Auricchio R, Galatola M, Cielo D, Rotondo R, Carbone F, Mandile R, Carpinelli M, Vitale S, Matarese G, Gianfrani C, Troncone R, Auricchio S, Greco L. Antibody Profile, Gene Expression and Serum Cytokines in At-Risk Infants before the Onset of Celiac Disease. Int J Mol Sci 2023; 24:ijms24076836. [PMID: 37047806 PMCID: PMC10095049 DOI: 10.3390/ijms24076836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Immunological events that precede the development of villous atrophy in celiac disease (CeD) are still not completely understood. We aimed to explore CeD-associated antibody production (anti-native gliadin (AGA), anti-deamidated gliadin (DGP) and anti-tissue transglutaminase (anti-tTG)) in infants at genetic risk for CeD from the Italian cohorts of the PREVENT-CD and Neocel projects, as well as the relationship between antibody production and systemic inflammation. HLA DQ2 and/or DQ8 infants from families with a CeD case were followed from birth. Out of 220 at-risk children, 182 had not developed CeD by 6 years of age (CTRLs), and 38 developed celiac disease (CeD). The profiles of serum cytokines (INFγ, IL1β, IL2, IL4, IL6, IL10, IL12p70, IL17A and TNFα) and the expression of selected genes (FoxP3, IL10, TGFβ, INFγ, IL4 and IL2) were evaluated in 46 children (20 CeD and 26 CTRLs). Among the 182 healthy CTRLs, 28 (15.3%) produced high levels of AGA-IgA (AGA+CTRLs), and none developed anti-tTG-IgA or DGP-IgA, compared to 2/38 (5.3%) CeD infants (Chi Sq. 5.97, p = 0.0014). AGAs appeared earlier in CTRLs than in those who developed CeD (19 vs. 28 months). Additionally, the production of AGAs in CeD overlapped with the production of DGP and anti-tTG. In addition, gene expression as well as serum cytokine levels discriminated children who developed CeD from CTRLs. In conclusion, these findings suggest that the early and isolated production of AGA-IgA antibodies is a CeD-tolerogenic marker and that changes in gene expression and cytokine patterns precede the appearance of anti-tTG antibodies.
Collapse
Affiliation(s)
- Renata Auricchio
- Department of Translational Medical Science, University Federico II, 80131 Naples, Italy
- European Laboratory for Food Induced Diseases, University Federico II, 80131 Naples, Italy
| | - Martina Galatola
- Department of Translational Medical Science, University Federico II, 80131 Naples, Italy
| | - Donatella Cielo
- Department of Translational Medical Science, University Federico II, 80131 Naples, Italy
| | - Roberta Rotondo
- Department of Translational Medical Science, University Federico II, 80131 Naples, Italy
| | - Fortunata Carbone
- Laboratory of Immunology, Institute for Experimental Endocrinology and Oncology, National Research Council of Italy (IEOS-CNR), c/o Department of Molecular Medicine and Medical Biotechnology, University Federico II, 80131 Naples, Italy
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Roberta Mandile
- Department of Translational Medical Science, University Federico II, 80131 Naples, Italy
- European Laboratory for Food Induced Diseases, University Federico II, 80131 Naples, Italy
| | - Martina Carpinelli
- Department of Translational Medical Science, University Federico II, 80131 Naples, Italy
- European Laboratory for Food Induced Diseases, University Federico II, 80131 Naples, Italy
| | - Serena Vitale
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), 80131 Naples, Italy
| | - Giuseppe Matarese
- Laboratory of Immunology, Institute for Experimental Endocrinology and Oncology, National Research Council of Italy (IEOS-CNR), c/o Department of Molecular Medicine and Medical Biotechnology, University Federico II, 80131 Naples, Italy
| | - Carmen Gianfrani
- European Laboratory for Food Induced Diseases, University Federico II, 80131 Naples, Italy
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), 80131 Naples, Italy
| | - Riccardo Troncone
- Department of Translational Medical Science, University Federico II, 80131 Naples, Italy
- European Laboratory for Food Induced Diseases, University Federico II, 80131 Naples, Italy
| | - Salvatore Auricchio
- European Laboratory for Food Induced Diseases, University Federico II, 80131 Naples, Italy
| | - Luigi Greco
- European Laboratory for Food Induced Diseases, University Federico II, 80131 Naples, Italy
| |
Collapse
|
3
|
Federica R, Edda R, Daniela R, Simone B, Giulia N, Gabriele L, Marta M, Marco P, Gianluca B, Elena N, Matteo C, Serena S, Matteo R, Amedeo A, Salvatore CA. Characterization of the “gut microbiota-immunity axis” and microbial lipid metabolites in atrophic and potential celiac disease. Front Microbiol 2022; 13:886008. [PMID: 36246269 PMCID: PMC9561818 DOI: 10.3389/fmicb.2022.886008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Potential celiac disease (pCD) is characterized by genetic predisposition, positive anti-endomysial and anti-tissue transglutaminase antibodies, but a normal or almost normal jejunal mucosa (e.g., minor histological abnormalities without villous atrophy). To gain further insights into basic mechanisms involved in the development of intestinal villous atrophy, we evaluated and compared the microbial, lipid, and immunological signatures of pCD and atrophic CD (aCD). Materials and methods This study included 17 aCD patients, 10 pCD patients, and 12 healthy controls (HC). Serum samples from all participants were collected to analyze free fatty acids (FFAs). Duodenal mucosa samples of aCD and pCD patients were taken to evaluate histology, tissue microbiota composition, and mucosal immune response. Results We found no significant differences in the mucosa-associated microbiota composition of pCD and aCD patients. On the other hand, in pCD patients, the overall abundance of serum FFAs showed relevant and significant differences in comparison with aCD patients and HC. In detail, compared to HC, pCD patients displayed higher levels of propionic, butyric, valeric, 2-ethylhexanoic, tetradecanoic, hexadecanoic, and octadecanoic acids. Instead, aCD patients showed increased levels of propionic, isohexanoic, and 2-ethylhexanoic acids, and a lower abundance of isovaleric and 2-methylbutyricacids when compared to HC. In addition, compared to aCD patients, pCD patients showed a higher abundance of isobutyric and octadecanoic acid. Finally, the immunological analysis of duodenal biopsy revealed a lower percentage of CD4+ T lymphocytes in pCD infiltrate compared to that observed in aCD patients. The functional characterization of T cells documented a pro-inflammatory immune response in both aCD and pCD patients, but the pCD patients showed a higher percentage of Th0/Th17 and a lower percentage of Th1/Th17. Conclusion The results of the present study show, for the first time, that the duodenal microbiota of patients with pCD does not differ substantially from that of aCD; however, serum FFAs and local T cells displayed a distinctive profile between pCD, aCD, and HC. In conclusion, our result may help to shed new light on the “gut microbiota-immunity axis,” lipid metabolites, and duodenal immune response in overt CD and pCD patients, opening new paradigms in understanding the pathogenesis behind CD progression.
Collapse
Affiliation(s)
- Ricci Federica
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, Tuscany Regional Referral Center for Adult Celiac Disease, Florence, Italy
| | - Russo Edda
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Renzi Daniela
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, Tuscany Regional Referral Center for Adult Celiac Disease, Florence, Italy
| | - Baldi Simone
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Nannini Giulia
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lami Gabriele
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, Tuscany Regional Referral Center for Adult Celiac Disease, Florence, Italy
| | - Menicatti Marta
- Department of Neuroscience, Pharmaceutical and Child Health Area (NEUROFARBA), Florence, Italy
| | - Pallecchi Marco
- Department of Neuroscience, Pharmaceutical and Child Health Area (NEUROFARBA), Florence, Italy
| | - Bartolucci Gianluca
- Department of Neuroscience, Pharmaceutical and Child Health Area (NEUROFARBA), Florence, Italy
| | - Niccolai Elena
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Cerboneschi Matteo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Smeazzetto Serena
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ramazzotti Matteo
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, Florence, Italy
| | - Amedei Amedeo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- *Correspondence: Amedei Amedeo,
| | - Calabrò Antonino Salvatore
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, Tuscany Regional Referral Center for Adult Celiac Disease, Florence, Italy
| |
Collapse
|
4
|
Vitale S, Maglio M, Picascia S, Mottola I, Miele E, Troncone R, Auricchio R, Gianfrani C. Intestinal Cellular Biomarkers of Mucosal Lesion Progression in Pediatric Celiac Disease. Pharmaceutics 2021; 13:pharmaceutics13111971. [PMID: 34834386 PMCID: PMC8623763 DOI: 10.3390/pharmaceutics13111971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Celiac disease (CD) is a chronic intestinal inflammation caused by gluten ingestion in genetically predisposed individuals. Overt-CD and potential-CD are the two main forms of gluten intolerance in pediatric patients with different grades of intestinal mucosa lesion and clinical management. For overt-CD patients the gluten-free diet is mandatory, while for potential-CD the dietary therapy is recommended only for those subjects becoming clinically symptomatic overtime. To date, specific early biomarkers of evolution to villous atrophy in potential-CD are lacking. We recently observed an expansion of TCRγδ+ T cells and a concomitant disappearance of IL4-producing T cells in the intestinal mucosa of overt-CD patients compared to potential-CD children, suggesting the involvement of these two cells subsets in the transition from potential-CD to overt-CD. In this study, we demonstrated that the intestinal densities of IL4+ T cells inversely correlated with TCRγδ+ T cell expansion (p < 0.005) and with the serum levels of anti-tissue transglutaminase antibodies (p < 0.01). The changes of these two cell subsets strongly correlated with mucosal lesions, according to the histological Marsh classification, as the transition from M0 to M3 lesions was associated with a significant reduction of IL4+ T cells (M0 vs. M1 p < 0.04, M0 vs. M3 p < 0.007) and an increase of TCRγδ+ T cells (M0 vs. M1 p < 0.05, M0 vs. M3 p < 0.0006). These findings strongly suggest that the detection of TCRγδ+ and IL4+ T cells could serve as cellular biomarkers of mucosal lesion and targets of novel immunomodulatory therapies for CD.
Collapse
Affiliation(s)
- Serena Vitale
- Institute of Biochemistry and Cell Biology-CNR, 80131 Naples, Italy; (S.V.); (S.P.); (I.M.); (C.G.)
| | - Mariantonia Maglio
- Department of Translational Medicine & European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.M.); (E.M.); (R.T.)
| | - Stefania Picascia
- Institute of Biochemistry and Cell Biology-CNR, 80131 Naples, Italy; (S.V.); (S.P.); (I.M.); (C.G.)
| | - Ilaria Mottola
- Institute of Biochemistry and Cell Biology-CNR, 80131 Naples, Italy; (S.V.); (S.P.); (I.M.); (C.G.)
| | - Erasmo Miele
- Department of Translational Medicine & European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.M.); (E.M.); (R.T.)
| | - Riccardo Troncone
- Department of Translational Medicine & European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.M.); (E.M.); (R.T.)
| | - Renata Auricchio
- Department of Translational Medicine & European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.M.); (E.M.); (R.T.)
- Correspondence:
| | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology-CNR, 80131 Naples, Italy; (S.V.); (S.P.); (I.M.); (C.G.)
- Department of Translational Medicine & European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.M.); (E.M.); (R.T.)
| |
Collapse
|
5
|
Camarero C, De Andrés A, García-Hoz C, Roldán B, Muriel A, León F, Roy G. Assessment of Duodenal Intraepithelial Lymphocyte Composition (Lymphogram) for Accurate and Prompt Diagnosis of Celiac Disease in Pediatric Patients. Clin Transl Gastroenterol 2021; 12:e00426. [PMID: 34757327 PMCID: PMC8585297 DOI: 10.14309/ctg.0000000000000426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Quantitative and phenotypic analyses of duodenal intraepithelial lymphocytes (IELs) by flow cytometry (IEL lymphogram) confer specificity and enable the diagnosis even in unconventional presentations of celiac disease (CD). To evaluate the validity of the IEL lymphograms in the pediatric population for new insights into their use as biomarkers in the natural history of CD. METHODS We retrospectively included 1,211 children (602 with active CD, 92 on a gluten-free diet, 47 with potential CD, and 470 nonceliac controls) who required duodenal biopsies in this study. The cutoff values for IEL subsets were established to calculate the probability of disease according to the lymphogram. RESULTS A celiac lymphogram (a ≥15% increase in gamma-delta T-cell receptor IELs and a simultaneous ≤6% decrease in CD3 surface-negative [sCD3-]) IELs was strongly associated with the diagnosis of active CD, which was present in 89.7% of the confirmed patients. The remaining 10% of the celiac patients had a partial celiac lymphogram (≥15% increase gamma-delta T-cell receptor IELs or ≤6% decrease in sCD3- IELs), with lower diagnostic certainty. On a gluten-free diet, nearly 20% of the patients were indistinguishable from nonceliac subjects based on the lymphogram. In potential CD, a decrease in sCD3- IELs was a risk marker of progression to villous atrophy and a diagnosis of active CD. DISCUSSION If a biopsy is clinically indicated, the IEL lymphogram adds specificity to the histological findings, reducing diagnostic delays and misdiagnoses. The lymphogram is useful for monitoring the natural progression of the disease and predicting the transition from potential celiac to overt CD.
Collapse
Affiliation(s)
- Cristina Camarero
- Department of Pediatric Gastroenterology, University Hospital Ramón y Cajal, University of Alcal, Madrid, Spain;
| | - Ana De Andrés
- Department of Immunology, University Hospital Ramón y Cajal, IRYCIS Madrid, Spain;
| | - Carlota García-Hoz
- Department of Immunology, University Hospital Ramón y Cajal, IRYCIS Madrid, Spain;
| | - Belén Roldán
- Department of Pediatric Gastroenterology, University Hospital Ramón y Cajal, University of Alcal, Madrid, Spain;
| | - Alfonso Muriel
- Clinical Biostatistic Unit, University Hospital Ramón y Cajal IRYCIS, CIBERESP Nursing and Physiotherapy Department, University of Alcalá, Madrid, Spain;
| | | | - Garbiñe Roy
- Department of Immunology, University Hospital Ramón y Cajal, IRYCIS Madrid, Spain;
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The current review is prompted by recent studies indicating that adaptive immunity could be sufficient to explain rapid onset symptoms as well as many chronic effects of gluten in celiac disease. RECENT FINDINGS Gluten re-exposure in treated celiac disease drives a coordinated systemic cytokine release response implicating T-cell activation within 2 h. Instead of direct effects of gluten on innate immunity, long lasting memory CD4+ T cells activated within 2 h of ingesting gluten or injecting purified gluten peptides now appear to be responsible for acute digestive symptoms. In addition, memory B cells and plasma cells specific for gluten and transglutaminase 2, rather than innate immune cells, are the preferred antigen-presenting cells for gluten in the gut. A variety of innate immune stimuli such as transient infections and local intestinal microbiome, not necessarily gluten itself, may contribute to disease initiation and transition to overt intestinal mucosal injury. Gluten-specific adaptive immunity in the gut and blood are now shown to be closely linked, and systemic cytokine release after gluten provides an additional explanation for extraintestinal manifestations of celiac disease. SUMMARY Clinical studies utilizing cytokines as new biomarkers for gluten immunity promise to improve understanding of clinical effects of gluten, accelerate therapeutics development, and augment diagnosis.
Collapse
|