1
|
Beckmann D, Langnaese K, Gottfried A, Hradsky J, Tedford K, Tiwari N, Thomas U, Fischer KD, Korthals M. Ca 2+ Homeostasis by Plasma Membrane Ca 2+ ATPase (PMCA) 1 Is Essential for the Development of DP Thymocytes. Int J Mol Sci 2023; 24:ijms24021442. [PMID: 36674959 PMCID: PMC9865543 DOI: 10.3390/ijms24021442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
The strength of Ca2+ signaling is a hallmark of T cell activation, yet the role of Ca2+ homeostasis in developing T cells before expressing a mature T cell receptor is poorly understood. We aimed to unveil specific functions of the two plasma membrane Ca2+ ATPases expressed in T cells, PMCA1 and PMCA4. On a transcriptional and protein level we found that PMCA4 was expressed at low levels in CD4-CD8- double negative (DN) thymocytes and was even downregulated in subsequent stages while PMCA1 was present throughout development and upregulated in CD4+CD8+ double positive (DP) thymocytes. Mice with a targeted deletion of Pmca1 in DN3 thymocytes had an almost complete block of DP thymocyte development with an accumulation of DN4 thymocytes but severely reduced numbers of CD8+ immature single positive (ISP) thymocytes. The DN4 thymocytes of these mice showed strongly elevated basal cytosolic Ca2+ levels and a pre-mature CD5 expression, but in contrast to the DP thymocytes they were only mildly prone to apoptosis. Surprisingly, mice with a germline deletion of Pmca4 did not show any signs of altered progression through the developmental thymocyte stages, nor altered Ca2+ homeostasis throughout this process. PMCA1 is, therefore, non-redundant in keeping cellular Ca2+ levels low in the early thymocyte development required for the DN to DP transition.
Collapse
Affiliation(s)
- David Beckmann
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Kristina Langnaese
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Anna Gottfried
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Johannes Hradsky
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Kerry Tedford
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Nikhil Tiwari
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39120 Magdeburg, Germany
| | - Ulrich Thomas
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39120 Magdeburg, Germany
| | - Klaus-Dieter Fischer
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| | - Mark Korthals
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
2
|
Zhang X, He Y, Ren P, Chen L, Han Z, Qi L, Chen L, Luo Y, Zhang N, Lu W, Guo H. Low expression and Hypermethylation of ATP2B1 in Intrahepatic Cholangiocarcinoma Correlated With Cold Tumor Microenvironment. Front Oncol 2022; 12:927298. [PMID: 35875160 PMCID: PMC9302110 DOI: 10.3389/fonc.2022.927298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background The efficacy of current therapeutic schedule is limited owing to fibroproliferative tumor microenvironment (TME) of cholangiocarcinoma, compelling a search for new therapeutic targets. Methods Gene expression profiles and methylation profiles were obtained from UCSC Xena. Consensus clustering was performed on the transcriptome data of cholangiocarcinoma to determine the different immune subtypes. The differentially expressed genes (DEGs) between hot tumor and cold tumors were identified. ESTIMATE was used to assess immune score, and the cases were separated into relatively superior and inferior immune score groups. Single-sample gene set enrichment analysis was applied to assess 28 immune cells in the cholangiocarcinoma microenvironment. Unsupervised consensus was applied for methylation profiling to distribute the high and low methylation groups. The correlation between DNA methylation and mRNA expression was investigated, and the relationship between the ATP2B1 gene and the immune microenvironment was explored. Finally, 77 cases of intrahepatic cholangiocarcinoma (ICC) were collected for verification. Results Seven subtypes were related to patient outcomes (P=0.005). The proportions of CD8+ T cells in the “hot” immune type was significantly greater than that in the “cold” immune type (P<0.05). Next, DEGs and DNA methylation-governed genes were intersected, and ATP2B1 was identified as a prognosis factor in ICC (P=0.035). ATP2B1 expression was positively correlated with immune scores (P=0.005, r=0.458), the levels of infiltrating CD8+ T cells (P=0.004, r=0.47), and CD4+ T cells (P=0.027, r=0.37). Immunohistochemistry confirmed that the amounts of CD8+ and CD4+ T cells were significantly higher in ICC tissue samples than in tissues with ATP2B1 overexpression (P<0.05). Conclusions ATP2B1 overexpression can activate immune signals and prompt cold tumor response.
Collapse
Affiliation(s)
- Xiehua Zhang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Hepatobiliary Oncology, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Infectious Diseases, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Yuchao He
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Peiqi Ren
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Lu Chen
- Department of Hepatobiliary Oncology, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhiqiang Han
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Liwei Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yi Luo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Ning Zhang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Wei Lu
- Department of Hepatobiliary Oncology, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Hua Guo, ; Wei Lu,
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Hua Guo, ; Wei Lu,
| |
Collapse
|