1
|
Kurz M, Ulrich M, Kirchhofer SB, Bittner A, Daude M, Diederich WE, Pauck K, Garn H, Bünemann M. Arachidonic Acid Directly Activates the Human DP2 Receptor. Mol Pharmacol 2024; 106:216-224. [PMID: 39284672 DOI: 10.1124/molpharm.124.000884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/30/2024] [Accepted: 06/25/2024] [Indexed: 10/05/2024] Open
Abstract
Aberrant type 2 inflammatory responses are the underlying cause of the pathophysiology of allergic asthma, allergic rhinitis, and other atopic diseases, with an alarming prevalence in relevant parts of the Western world. A bulk of evidence points out the important role of the DP2 receptor in these inflammation processes. A screening of different polyunsaturated fatty acids at a fluorescence resonance energy transfer-based DP2 receptor conformation sensor expressed in human embryonic kidney (HEK) cells revealed an agonistic effect of the prostaglandin (PG)-D2 precursor arachidonic acid on DP2 receptor activity of about 80% of the effect induced by PGD2 In a combination of experiments at the conformation sensor and using a bioluminescence resonance energy transfer-based G protein activation sensor expressed together with DP2 receptor wild type in HEK cells, we found that arachidonic acid acts as a direct activator of the DP2 receptor, but not the DP1 receptor, in a concentration range considered physiologically relevant. Pharmacological inhibition of cyclooxygenases and lipoxygenases as well as cytochrome P450 did not lead to a diminished arachidonic acid response on the DP2 receptor, confirming a direct action of arachidonic acid on the receptor. SIGNIFICANCE STATEMENT: This study identified the prostaglandin precursor arachidonic acid to directly activate the DP2 receptor, a G protein-coupled receptor that is known to play an important role in type 2 inflammation.
Collapse
Affiliation(s)
- Michael Kurz
- Institute for Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany (M.K., M.U., S.B.K., A.B., M.B.); Institute for Pharmaceutical Chemistry, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany (M.D., W.E.D.); and Translational Inflammation Research Division and Core Facility for Single-Cell Multiomics, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany (K.P., H.G.)
| | - Michaela Ulrich
- Institute for Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany (M.K., M.U., S.B.K., A.B., M.B.); Institute for Pharmaceutical Chemistry, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany (M.D., W.E.D.); and Translational Inflammation Research Division and Core Facility for Single-Cell Multiomics, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany (K.P., H.G.)
| | - Sina B Kirchhofer
- Institute for Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany (M.K., M.U., S.B.K., A.B., M.B.); Institute for Pharmaceutical Chemistry, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany (M.D., W.E.D.); and Translational Inflammation Research Division and Core Facility for Single-Cell Multiomics, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany (K.P., H.G.)
| | - Alwina Bittner
- Institute for Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany (M.K., M.U., S.B.K., A.B., M.B.); Institute for Pharmaceutical Chemistry, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany (M.D., W.E.D.); and Translational Inflammation Research Division and Core Facility for Single-Cell Multiomics, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany (K.P., H.G.)
| | - Michael Daude
- Institute for Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany (M.K., M.U., S.B.K., A.B., M.B.); Institute for Pharmaceutical Chemistry, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany (M.D., W.E.D.); and Translational Inflammation Research Division and Core Facility for Single-Cell Multiomics, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany (K.P., H.G.)
| | - Wibke E Diederich
- Institute for Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany (M.K., M.U., S.B.K., A.B., M.B.); Institute for Pharmaceutical Chemistry, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany (M.D., W.E.D.); and Translational Inflammation Research Division and Core Facility for Single-Cell Multiomics, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany (K.P., H.G.)
| | - Kim Pauck
- Institute for Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany (M.K., M.U., S.B.K., A.B., M.B.); Institute for Pharmaceutical Chemistry, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany (M.D., W.E.D.); and Translational Inflammation Research Division and Core Facility for Single-Cell Multiomics, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany (K.P., H.G.)
| | - Holger Garn
- Institute for Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany (M.K., M.U., S.B.K., A.B., M.B.); Institute for Pharmaceutical Chemistry, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany (M.D., W.E.D.); and Translational Inflammation Research Division and Core Facility for Single-Cell Multiomics, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany (K.P., H.G.)
| | - Moritz Bünemann
- Institute for Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany (M.K., M.U., S.B.K., A.B., M.B.); Institute for Pharmaceutical Chemistry, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany (M.D., W.E.D.); and Translational Inflammation Research Division and Core Facility for Single-Cell Multiomics, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany (K.P., H.G.)
| |
Collapse
|
2
|
Hussein H, Van Remoortel S, Boeckxstaens GE. Irritable bowel syndrome: When food is a pain in the gut. Immunol Rev 2024; 326:102-116. [PMID: 39037230 DOI: 10.1111/imr.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Irritable bowel syndrome (IBS) is a chronic gastrointestinal condition associated with altered bowel habits and recurrent abdominal pain, often triggered by food intake. Current treatments focus on improving stool pattern, but effective treatments for pain in IBS are still lacking due to our limited understanding of pathophysiological mechanisms. Visceral hypersensitivity (VHS), or abnormal visceral pain perception, underlies abdominal pain development in IBS, and mast cell activation has been shown to play an important role in the development of VHS. Our work recently revealed that abdominal pain in response to food intake is induced by the sensitization of colonic pain-sensing neurons by histamine produced by activated mast cells following a local IgE response to food. In this review, we summarize the current knowledge on abdominal pain and VHS pathophysiology in IBS, we outline the work leading to the discovery of the role of histamine in abdominal pain, and we introduce antihistamines as a novel treatment option to manage chronic abdominal pain in patients with IBS.
Collapse
Affiliation(s)
- Hind Hussein
- Center for Intestinal Neuro-Immune Interactions, Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Samuel Van Remoortel
- Center for Intestinal Neuro-Immune Interactions, Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Guy E Boeckxstaens
- Center for Intestinal Neuro-Immune Interactions, Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Wang Y, Liu L. Immunological factors, important players in the development of asthma. BMC Immunol 2024; 25:50. [PMID: 39060923 PMCID: PMC11282818 DOI: 10.1186/s12865-024-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Asthma is a heterogeneous disease, and its development is the result of a combination of factors, including genetic factors, environmental factors, immune dysfunction and other factors. Its specific mechanism has not yet been fully investigated. With the improvement of disease models, research on the pathogenesis of asthma has made great progress. Immunological disorders play an important role in asthma. Previously, we thought that asthma was mainly caused by an imbalance between Th1 and Th2 immune responses, but this theory cannot fully explain the pathogenesis of asthma. Recent studies have shown that T-cell subsets such as Th1 cells, Th2 cells, Th17 cells, Tregs and their cytokines contribute to asthma through different mechanisms. For the purpose of the present study, asthma was classified into distinct phenotypes based on airway inflammatory cells, such as eosinophilic asthma, characterized by predominant eosinophil aggregates, and neutrophilic asthma, characterized by predominant neutrophil aggregates. This paper will examine the immune mechanisms underlying different types of asthma, and will utilize data from animal models and clinical studies targeting specific immune pathways to inform more precise treatments for this condition.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pediatric Respiratory, Children's Medical Center,The First Hospital of Jilin University, Changchun, 130021, China
| | - Li Liu
- Department of Pediatric Respiratory, Children's Medical Center,The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
4
|
Tangye SG, Mackie J, Pathmanandavel K, Ma CS. The trajectory of human B-cell function, immune deficiency, and allergy revealed by inborn errors of immunity. Immunol Rev 2024; 322:212-232. [PMID: 37983844 DOI: 10.1111/imr.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The essential role of B cells is to produce protective immunoglobulins (Ig) that recognize, neutralize, and clear invading pathogens. This results from the integration of signals provided by pathogens or vaccines and the stimulatory microenvironment within sites of immune activation, such as secondary lymphoid tissues, that drive mature B cells to differentiate into memory B cells and antibody (Ab)-secreting plasma cells. In this context, B cells undergo several molecular events including Ig class switching and somatic hypermutation that results in the production of high-affinity Ag-specific Abs of different classes, enabling effective pathogen neutralization and long-lived humoral immunity. However, perturbations to these key signaling pathways underpin immune dyscrasias including immune deficiency and autoimmunity or allergy. Inborn errors of immunity that disrupt critical immune pathways have identified non-redundant requirements for eliciting and maintaining humoral immune memory but concomitantly prevent immune dysregulation. Here, we will discuss our studies on human B cells, and how our investigation of cytokine signaling in B cells have identified fundamental requirements for memory B-cell formation, Ab production as well as regulating Ig class switching in the context of protective versus allergic immune responses.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Karrnan Pathmanandavel
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Ni J, Zheng J, Mo G, Chen G, Li J, Cao L, Hu B, Liu H. Structural characterization and immunomodulatory effect of a starch-like Grifola frondosa polysaccharides on cyclophosphamide-induced immunosuppression in mice. Carbohydr Res 2024; 535:109011. [PMID: 38150753 DOI: 10.1016/j.carres.2023.109011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
In this study, a pure Grifola frondosa polysaccharide (GFP-1) was extracted and purified from Grifola frondosa. By HPLC, GC-MS, FT-IR, and NMR analysis, GFP-1 was determined to be a starch-like polysaccharide with an average molecular weight of 3370 kDa. It included three monosaccharides, i.e., glucose, galactose, and mannose. The backbone of GFP-1 consisted of →4)-α-Glcp-(1→ and →4,6)-α-Glcp-(1 → . The side branches were composed of →6)-α-Galp-(1→, α-Glcp-(1→, and a small amount of α-Manp-(1 → . By using a cyclophosphamide (CTX)-induced immunosuppressed mice model, we evaluated the immunomodulatory activity of GFP-1. The results showed that GFP-1 increased the thymic and spleen indices, promoted the level of IgG and IgA in serum, and activated the mitogen-activated protein kinase (MAPK) pathway in CTX-induced mice. Also, GFP-1 significantly promoted the mRNA expression of intestinal barrier factors and protected intestinal structural integrity in immunosuppressed mice. In conclusion, the data presented here suggested that GFP-1 might be a potential immune-enhancing supplement.
Collapse
Affiliation(s)
- Jimin Ni
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China
| | - Junping Zheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China
| | - Guoyan Mo
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China
| | - Guangming Chen
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China
| | - Jingjing Li
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China
| | - Lu Cao
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China
| | - Baifei Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China.
| |
Collapse
|
6
|
Zhang L, Wu M, Guo W, Zhu S, Li S, Lv S, Li Y, Liu L, Xing Y, Chen H, Liu M, Peng S, Chen Y, Yi Z. A small molecule BCL6 inhibitor as chemosensitizers in acute myeloid leukemia. Biomed Pharmacother 2023; 166:115358. [PMID: 37634473 DOI: 10.1016/j.biopha.2023.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 08/29/2023] Open
Abstract
BCL6 is a transcriptional repressor that regulates multiple genes involved in immune cell differentiation, DNA damage repair, cell cycle, and apoptosis, and is a carcinogenic factor in acute myeloid leukemia (AML). AML is one of the four major types of leukemia with the 5-year survival rate of patients is less than 20% and chemotherapy resistance remains the major obstacle to the treatment failure of AML. We identified WK499, a small molecule compound that can bind to BCL6BTB structure. Treatment with WK499 hinders the interactions between BCL6 with its corepressor proteins, resulting in a remarkable change of BCL6 downstream genes and anti-proliferative effects in AML cells, and inducing cell cycle arrest and apoptosis. We verified that AraC and DOXo could induce BCL6 expression in AML cells, and found that WK499 had a synergistic effect when combined with chemotherapeutic drugs. We further proved that WK499 and AraC could achieve a better result of inhibiting the growth of AML in vivo. These findings indicate that WK499, a small molecule inhibitor of BCL6, not only inhibits the proliferation of AML, but also provides an effective therapeutic strategy for increasing AML sensitivity to chemotherapy.
Collapse
Affiliation(s)
- Lin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Min Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Weikai Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Shuangshuang Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Shen Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Shiyi Lv
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Yan Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Layang Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Yajing Xing
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Huang Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Shihong Peng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China; Shanghai Yuyao Biotech Co., Ltd., Shanghai 200241, China.
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China.
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dong Chuan Rd, Shanghai 200241, China.
| |
Collapse
|
7
|
Gokhale S, Victor E, Tsai J, Spirollari E, Matracz B, Takatsuka S, Jung J, Kitamura D, Xie P. Upregulated Expression of the IL-9 Receptor on TRAF3-Deficient B Lymphocytes Confers Ig Isotype Switching Responsiveness to IL-9 in the Presence of Antigen Receptor Engagement and IL-4. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1059-1073. [PMID: 36883978 PMCID: PMC10073299 DOI: 10.4049/jimmunol.2200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/06/2023] [Indexed: 03/09/2023]
Abstract
The pleiotropic cytokine IL-9 signals to target cells by binding to a heterodimeric receptor consisting of the unique subunit IL-9R and the common subunit γ-chain shared by multiple cytokines of the γ-chain family. In the current study, we found that the expression of IL-9R was strikingly upregulated in mouse naive follicular B cells genetically deficient in TNFR-associated factor 3 (TRAF3), a critical regulator of B cell survival and function. The highly upregulated IL-9R on Traf3-/- follicular B cells conferred responsiveness to IL-9, including IgM production and STAT3 phosphorylation. Interestingly, IL-9 significantly enhanced class switch recombination to IgG1 induced by BCR crosslinking plus IL-4 in Traf3-/- B cells, which was not observed in littermate control B cells. We further demonstrated that blocking the JAK-STAT3 signaling pathway abrogated the enhancing effect of IL-9 on class switch recombination to IgG1 induced by BCR crosslinking plus IL-4 in Traf3-/- B cells. Our study thus revealed, to our knowledge, a novel pathway that TRAF3 suppresses B cell activation and Ig isotype switching by inhibiting IL-9R-JAK-STAT3 signaling. Taken together, our findings provide (to our knowledge) new insights into the TRAF3-IL-9R axis in B cell function and have significant implications for the understanding and treatment of a variety of human diseases involving aberrant B cell activation such as autoimmune disorders.
Collapse
Affiliation(s)
- Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Eton Victor
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Jemmie Tsai
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Eris Spirollari
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Brygida Matracz
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Shogo Takatsuka
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Jaeyong Jung
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Daisuke Kitamura
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Rutgers Cancer Institute of New Jersey
| |
Collapse
|
8
|
Kabat AM, Pearce EL, Pearce EJ. Metabolism in type 2 immune responses. Immunity 2023; 56:723-741. [PMID: 37044062 PMCID: PMC10938369 DOI: 10.1016/j.immuni.2023.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023]
Abstract
The immune response is tailored to the environment in which it takes place. Immune cells sense and adapt to changes in their surroundings, and it is now appreciated that in addition to cytokines made by stromal and epithelial cells, metabolic cues provide key adaptation signals. Changes in immune cell activation states are linked to changes in cellular metabolism that support function. Furthermore, metabolites themselves can signal between as well as within cells. Here, we discuss recent progress in our understanding of how metabolic regulation relates to type 2 immunity firstly by considering specifics of metabolism within type 2 immune cells and secondly by stressing how type 2 immune cells are integrated more broadly into the metabolism of the organism as a whole.
Collapse
Affiliation(s)
- Agnieszka M Kabat
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erika L Pearce
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Edward J Pearce
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| |
Collapse
|
9
|
Ma CS. T-helper-2 cells and atopic disease: lessons learnt from inborn errors of immunity. Curr Opin Immunol 2023; 81:102298. [PMID: 36870225 DOI: 10.1016/j.coi.2023.102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023]
Abstract
Inborn errors of immunity (IEI) are caused by monogenic variants that affect the host response to bacterial, viral, and fungal pathogens. As such, individuals with IEI often present with severe, recurrent, and life-threatening infections. However, the spectrum of disease due to IEI is very broad and extends to include autoimmunity, malignancy, and atopic diseases such as eczema, atopic dermatitis, and food and environmental allergies. Here, I review IEI that affect cytokine signaling pathways that dysregulate CD4+ T-cell differentiation, resulting in increased T-helper-2 (Th2) cell development, function, and pathogenicity. These are elegant examples of how rare IEI can provide unique insights into more common pathologies such as allergic disease that are impacting the general population at increased frequency.
Collapse
Affiliation(s)
- Cindy S Ma
- Garvan Institute of Medical Research, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Australia.
| |
Collapse
|
10
|
Tangye SG, Pathmanandavel K, Ma CS. Cytokine-mediated STAT-dependent pathways underpinning human B-cell differentiation and function. Curr Opin Immunol 2023; 81:102286. [PMID: 36764056 DOI: 10.1016/j.coi.2023.102286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
B cells are fundamental to host defence against infectious diseases; indeed, the ability of humans to elicit robust antibody responses following exposure to foreign antigens underpins long-lived humoral immunity and serological memory, as well as the success of most currently administered vaccines. However, B cells also have a dark side - they can cause myriad diseases, including autoimmunity, atopy, allergy and malignancy. Thus, it is critical to understand the molecular requirements for generating effective, high-affinity, specific immune responses following natural infection or vaccination, as well as for constraining B-cell function to mitigate B-cell-mediated immune dyscrasias. In this review, we discuss recent developments that have been derived from the identification and detailed analysis of individuals with inborn errors of immunity that disrupt cytokine signalling, resulting in immune dysregulatory conditions. These studies have defined fundamental cytokine/cytokine receptor/signal transducer and activator of transcription (STAT) signalling pathways that are critical for the generation and maintenance of human memory B-cell and plasma cell subsets during host defence, as well as revealed mechanisms of disease pathogenesis causing immune deficiency, autoimmunity and atopy. More importantly, these studies have identified molecules that could be targeted to either enhance humoral immunity in the settings of infection or vaccination, or attenuate humoral immunity that contributes to antibody-mediated autoimmunity or allergy.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW 2010, Australia; CIRCA (Clinical Immunogenomics Research Consortium of Australasia), Australia.
| | - Karrnan Pathmanandavel
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW 2010, Australia; CIRCA (Clinical Immunogenomics Research Consortium of Australasia), Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW 2010, Australia; CIRCA (Clinical Immunogenomics Research Consortium of Australasia), Australia
| |
Collapse
|
11
|
Daramola AK, Akinrinmade OA, Fajemisin EA, Naran K, Mthembu N, Hadebe S, Brombacher F, Huysamen AM, Fadeyi OE, Hunter R, Barth S. A recombinant Der p 1-specific allergen-toxin demonstrates superior killing of allergen-reactive IgG + hybridomas in comparison to its recombinant allergen-drug conjugate. IMMUNOTHERAPY ADVANCES 2022; 3:ltac023. [PMID: 36789295 PMCID: PMC9912260 DOI: 10.1093/immadv/ltac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Current treatments for asthma help to alleviate clinical symptoms but do not cure the disease. In this study, we explored a novel therapeutic approach for the treatment of house dust mite allergen Der p 1induced asthma by aiming to eliminate specific population of B-cells involved in memory IgE response to Der p 1. Materials and Methods To achieve this aim, we developed and evaluated two different proDer p 1-based fusion proteins; an allergen-toxin (proDer p 1-ETA) and an allergen-drug conjugate (ADC) (proDer p 1-SNAP-AURIF) against Der p 1 reactive hybridomas as an in vitro model for Der p 1 reactive human B-cells. The strategy involved the use of proDer p 1 allergen as a cell-specific ligand to selectively deliver the bacterial protein toxin Pseudomonas exotoxin A (ETA) or the synthetic small molecule toxin Auristatin F (AURIF) into the cytosol of Der p 1 reactive cells for highly efficient cell killing. Results As such, we demonstrated recombinant proDer p 1 fusion proteins were selectively bound by Der p 1 reactive hybridomas as well as primary IgG1+ B-cells from HDM-sensitized mice. The therapeutic potential of proDer p 1-ETA' and proDer p 1-SNAP-AURIF was confirmed by their selective cytotoxic activities on Der p 1 reactive hybridoma cells. The allergen-toxin demonstrated superior cytotoxic activity, with IC50 values in the single digit nanomolar value, compared to the ADC. Discussions Altogether, the proof-of-concept experiments in this study provide a promising approach for the treatment of patients with house dust mite-driven allergic asthma.
Collapse
Affiliation(s)
- A K Daramola
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - O A Akinrinmade
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - E A Fajemisin
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - K Naran
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - N Mthembu
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - S Hadebe
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - F Brombacher
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,International Centre for Genetic Engineering and Biotechnology (ICGEB) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology, Faculty of Health Sciences, University of Cape Town, South Africa,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, South Africa
| | - A M Huysamen
- Department of Chemistry, Faculty of Sciences, University of Cape Town, Cape Town, South Africa
| | - O E Fadeyi
- Department of Chemistry, Faculty of Sciences, University of Cape Town, Cape Town, South Africa
| | - R Hunter
- Department of Chemistry, Faculty of Sciences, University of Cape Town, Cape Town, South Africa
| | - S Barth
- Correspondence: Stefan Barth, South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Barnard Fuller Building, Anzio Rd, Observatory, Cape Town, 7935 South Africa.
| |
Collapse
|
12
|
Dombrowicz D. Identification of major human IgE-inducing parasite antigens: A path to therapeutic approaches? J Allergy Clin Immunol 2022; 150:1412-1414. [PMID: 36270491 DOI: 10.1016/j.jaci.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Affiliation(s)
- David Dombrowicz
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France.
| |
Collapse
|
13
|
Wang H, Han H, Niu Y, Li X, Du X, Wang Q. LPP polymorphisms are risk factors for allergic rhinitis in the Chinese Han population. Cytokine 2022; 159:156027. [PMID: 36084606 DOI: 10.1016/j.cyto.2022.156027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/17/2022] [Accepted: 08/26/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Lipoma preferred partner (LPP) polymorphisms are related to immune diseases, but the role of LPP gene in the pathogenesis of allergic rhinitis (AR) is unclear. The current study aimed to explore the contribution of LPP variants to AR susceptibility in the Chinese Han population. METHODS A total of 992 healthy controls and 992 patients with AR were recruited. Agena MassARRAY system was applied for genotyping. Odds ratios (OR) and 95% confidence intervals (CI) adjusted by age, sex, and body mass index (BMI) were calculated to conduct the risk assessment of LPP variants in people with a predisposition to AR. Additionally, multifactor dimensionality reduction (MDR) was applied to identify high-order interaction models for AR risk. RESULTS We found that rs2030519-G (p = 0.027, OR: 1.15, 95% CI: 1.02-1.31), rs6780858-G (p = 0.019, OR: 1.16, 95% CI: 1.03-1.32), and rs60946162-T (p = 0.014, OR: 1.18, 95% CI: 1.03-1.34) were associated with increased susceptibility to AR. Subgroup analyses indicated the interaction of LPP polymorphisms in terms of age, gender, and BMI with AR susceptibility (p < 0.05, OR > 1). MDR analysis revealed that rs60946162 had the information gain (0.40%) of individual attribute regarding AR. CONCLUSION Our results first determined that rs2030519, rs6780858, and rs60946162 were correlated with increased susceptibility to AR in the Chinese Han population, which add to our understanding of the impact of LPP gene variants on AR development.
Collapse
Affiliation(s)
- Haiying Wang
- Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shenmu 719300, China
| | - Hui Han
- Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shenmu 719300, China
| | - Yongliang Niu
- Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shenmu 719300, China
| | - Xiaobo Li
- Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shenmu 719300, China
| | - Xintao Du
- Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shenmu 719300, China
| | - Qiang Wang
- Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shenmu 719300, China.
| |
Collapse
|
14
|
Machado AS, Lage DP, Vale DL, Freitas CS, Linhares FP, Cardoso JMO, Oliveira-da-Silva JA, Pereira IAG, Ramos FF, Tavares GSV, Ludolf F, Bandeira RS, Maia LGN, Menezes-Souza D, Duarte MC, Chávez-Fumagalli MA, Roatt BM, Christodoulides M, Martins VT, Coelho EAF. Leishmania LiHyC protein is immunogenic and induces protection against visceral leishmaniasis. Parasite Immunol 2022; 44:e12921. [PMID: 35437797 DOI: 10.1111/pim.12921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/27/2022]
Abstract
AIMS Treatment against visceral leishmaniasis (VL) presents problems by toxicity of drugs, high cost and/or emergence of resistant strains. The diagnosis is hampered by variable sensitivity and/or specificity of tests. In this context, prophylactic vaccination could represent a control measure against disease. In this study, the protective efficacy from Leishmania LiHyC protein was evaluated in murine model against Leishmania infantum infection. METHODS AND RESULTS LiHyC was used as recombinant protein (rLiHyC) associated with saponin (rLiHyC/S) or Poloxamer 407-based polymeric micelles (rLiHyC/M) to immunize mice. Animals received also saline, saponin or empty micelles as controls. The immunogenicity was evaluated before and after challenge, and results showed that vaccination with rLiHyC/S or rLiHyC/M induced the production of high levels of IFN-γ, IL-12 and GM-CSF in cell culture supernatants, as well as higher IFN-γ expression evaluated by RT-qPCR and involvement from CD4+ and CD8+ T cell subtypes producing IFN-γ, TNF-α and IL-2. A positive lymphoproliferative response was also found in cell cultures from vaccinated animals, besides high levels of rLiHyC- and parasite-specific nitrite and IgG2a antibodies. Immunological assays correlated with significant reductions in the parasite load in spleens, livers, bone marrows and draining lymph nodes from vaccinated mice, when compared to values found in the controls. The micellar composition showed slightly better immunological and parasitological data, as compared to rLiHyC/S. CONCLUSION Results suggest that rLiHyC associated with adjuvants could be considered for future studies as a vaccine candidate against VL.
Collapse
Affiliation(s)
- Amanda S Machado
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Danniele L Vale
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Camila S Freitas
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Flávia P Linhares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Jamille M O Cardoso
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - João A Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Isabela A G Pereira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel S Bandeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz G N Maia
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana C Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Umacollo, Arequipa, Peru
| | - Bruno M Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, England
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
15
|
Bach2: A Key Regulator in Th2-Related Immune Cells and Th2 Immune Response. J Immunol Res 2022; 2022:2814510. [PMID: 35313725 PMCID: PMC8934237 DOI: 10.1155/2022/2814510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Th2 immune response is essential for providing protection against pathogens and orchestrating humoral immunity. However, excessive Th2 immune response leads to the pathogenesis of Th2 inflammation diseases, including asthma, allergic rhinitis, and atopic dermatitis. Emerging evidence suggest a critical role of the transcription factor Bach2 in regulating Th2 immune responses. Bach2 serves as a super enhancer and transcriptional repressor to control the differentiation and maturation of Th2-related immune cells such as B cell lineages and T cell lineages. In B cells, Bach2 is required for every stage of B cell development and can delay the class switch recombination and antibody-producing plasma cell differentiation. In T cell lineages, Bach2 suppresses the CD4+ T cell differentiation into Th2 cells, restrains Th2 cytokine production, and promotes the generation and function of regulatory T (Treg) cells to balance the immune activity. Furthermore, studies in various animal models show that Bach2 knockout animals spontaneously develop Th2 inflammation in the airway and gastrointestinal tract. Genome-wide association studies have identified various susceptibility loci of Bach2 which are linked with Th2 inflammatory diseases such as asthma and inflammatory bowel disease. Here, we discuss the critical role of Bach2 involved in the Th2 immune response and associated inflammatory diseases.
Collapse
|
16
|
Gowthaman U, Sikder S, Lee D, Fisher C. T follicular helper cells in IgE-mediated pathologies. Curr Opin Immunol 2022; 74:133-139. [DOI: 10.1016/j.coi.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 12/23/2022]
|
17
|
Nosratabadi R, Khajepour F, Zangouyee M, Khosravimashizi A, Afgar A, Abdollahi V, Dabiri S. Caraway extract alleviates atopic dermatitis by regulating oxidative stress, suppressing Th2 cells, and upregulating Th1 cells in mice. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.357741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Bychkova NV, Selivanov PA, Kalinina NM. Clinical implication of detecting sensitization to iodinated radiocontrast media in the basophil activation test by flow cytometry. Klin Lab Diagn 2021; 66:747-754. [PMID: 35020288 DOI: 10.51620/0869-2084-2021-66-12-747-754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The use of iodinated radiocontrast media is necessary for visualization. A number of patients have adverse effects of various nature and severity when these drugs are administered. Routine allergy tests do not provide adequate diagnosis of reactions to drugs in this group. The aim of this work is to assess the capabilities of the basophil activation test to confirm sensitization to non-ionic iodinated radiocontrast media, as well as to select a safe alternative drug in patients with a burdened history. Basophil activation test by flow cytometry was performed in 184 patients The Nikiforov Russian Centre of Emergency and Radiation Medicine» EMERCOM of Russia and 32 volunteers using ultravist, omnipack, and optiray. The presence of sensitization was assessed based on the basophil activation index, as well as spontaneous and anti-IgE antibody-induced activation of basophils and the population of T-lymphocytes type 2 immune response. The volunteers showed no sensitization to iodinated radiocontrast media. In patients with a medium degree of hypersensitivity reaction in vivo, in vitro sensitization to drugs was detected 4 times more often than in patients with a mild degree (51% versus 13.5%). In patients with systemic reactions to the administration of a known drug, in vitro sensitization was confirmed in 86% of cases, while the frequency of detection of sensitization to drugs did not differ. Spontaneous activation of basophils in patients and type 2 T-lymphocytes were 2 times higher than in volunteers. Patients were more likely to have low (less than 30%) activation of basophils for anti-IgE antibodies. The specificity of the basophil activation test with iodinated radiocontrast media was 100% with a sensitivity of 94.1%. Most patients were able to select a non-sensitizing contrast. Inclusion in the algorithm of spontaneous and anti-IgE antibody-induced activation of basophils and a population of T-lymphocytes type 2 immune response will allow the doctor to carry out a personalized approach to the management of patients with a burdened history.
Collapse
Affiliation(s)
- N V Bychkova
- The Nikiforov Russian Centre of Emergency and Radiation Medicine» EMERCOM of Russia.,Saint-Petersburg State Medical University named after I.P. Pavlov the Ministry of Russian Federation for Medicine
| | - P A Selivanov
- Third Military Hospital of the National Guard Troops of the Russian Federation
| | - N M Kalinina
- The Nikiforov Russian Centre of Emergency and Radiation Medicine» EMERCOM of Russia.,Saint-Petersburg State Medical University named after I.P. Pavlov the Ministry of Russian Federation for Medicine
| |
Collapse
|
19
|
Gazi U, Taylan-Ozkan A, Mumcuoglu KY. Immune mechanisms in human Sarcoptes scabiei (Acari: Sarcoptidae) infestations. Parasite Immunol 2021; 44:e12900. [PMID: 34923637 DOI: 10.1111/pim.12900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022]
Abstract
Scabies is a parasitic infestation of human and animal skin caused by different strains of the itch mite, Sarcoptes scabiei. The World Health Organization (WHO) has declared scabies in human as a neglected tropical disease, and today over 200 million people worldwide are affected. The two most commonly reported clinical manifestation of the condition are ordinary (OS) and crusted scabies (CS). CS, which can lead to fatal consequences due to secondary bacterial infections, is mostly observed in immunocompromised subjects but can also, although rarely, be detected in immunocompetent individuals. Innate and adaptive immune system components are involved in protection and pathogenesis of scabies, although with some differences between OS and CS. While the cutaneous immune response is dominated by CD4+ T-cells in OS, it is mainly mediated by CD8+ T-cells in CS. The two clinical conditions also differ in CD4+ T-cell-mediated immune responses with mixed TH 1/TH 2 (protective) and TH 2/TH 17 (non-protective) immunoprofiles in OS and CS, respectively. Moreover, the development of CS is associated with early immunosuppression that is followed by deleterious immune response to uncontrolled mite proliferation. However, the immune response to scabies still needs further attention due to inconsistent results in the literature. The aim of this study is to attract more attention to this area by summarizing the current literature on innate and adaptive immune responses triggered against S. scabiei mites.
Collapse
Affiliation(s)
- Umut Gazi
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Aysegul Taylan-Ozkan
- Department of Medical Microbiology, Faculty of Medicine, TOBB University of Economics and Technology, Ankara, Turkey
| | - Kosta Y Mumcuoglu
- Parasitology Unit, Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|