1
|
Kim S, Jeong HY, Kim S, Kim H, Lee S, Cho J, Kim C, Lee D. Proton Switch in the Secondary Coordination Sphere to Control Catalytic Events at the Metal Center: Biomimetic Oxo Transfer Chemistry of Nickel Amidate Complex. Chemistry 2021; 27:4700-4708. [PMID: 33427344 DOI: 10.1002/chem.202005183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 11/11/2022]
Abstract
High-valent metal-oxo species are key intermediates for the oxygen atom transfer step in the catalytic cycles of many metalloenzymes. While the redox-active metal centers of such enzymes are typically supported by anionic amino acid side chains or porphyrin rings, peptide backbones might function as strong electron-donating ligands to stabilize high oxidation states. To test the feasibility of this idea in synthetic settings, we have prepared a nickel(II) complex of new amido multidentate ligand. The mononuclear nickel complex of this N5 ligand catalyzes epoxidation reactions of a wide range of olefins by using mCPBA as a terminal oxidant. Notably, a remarkably high catalytic efficiency and selectivity were observed for terminal olefin substrates. We found that protonation of the secondary coordination sphere serves as the entry point to the catalytic cycle, in which high-valent nickel species is subsequently formed to carry out oxo-transfer reactions. A conceptually parallel process might allow metalloenzymes to control the catalytic cycle in the primary coordination sphere by using proton switch in the secondary coordination sphere.
Collapse
Affiliation(s)
- Soohyung Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Ha Young Jeong
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Korea
| | - Seonghan Kim
- Department of Emerging Materials Science, DGIST, Daegu, 42988, Korea
| | - Hongsik Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Sojeong Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Korea
| | - Jaeheung Cho
- Department of Emerging Materials Science, DGIST, Daegu, 42988, Korea.,Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Korea
| | - Dongwhan Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| |
Collapse
|
2
|
Yano T, Wasada-Tsutsui Y, Ikeda T, Shibayama T, Kajita Y, Inomata T, Funahashi Y, Ozawa T, Masuda H. Co(III) Complexes with N 2S 3-Type Ligands as Structural/Functional Models for the Isocyanide Hydrolysis Reaction Catalyzed by Nitrile Hydratase. Inorg Chem 2018; 57:4277-4290. [PMID: 29582997 DOI: 10.1021/acs.inorgchem.6b02324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has been before reported that, in addition to hydration of nitriles, the Fe-type nitrile hydratase (NHase) also catalyzes the hydrolysis of tert-butylisocyanide ( tBuNC). In order to investigate the unique isocyanide hydrolysis by NHase, we prepared three related Co(III) model complexes, PPh4[Co(L)] (1), PPh4[Co(L-O3)] (2), and PPh4[Co(L-O4)] (3), where L is bis( N-(2-mercapto-2-methylpropionyl)aminopropyl)sulfide. The suffixes L-O3 and L-O4 indicate ligands with a sulfenate and a sulfinate and with two sulfinates, respectively, instead of the two thiolates of L. The X-ray analyses of 1 and 3 reveal trigonal bipyramidal and square pyramidal structures, respectively. Complex 2, however, has five-coordinate trigonal-bipyramidal geometry with η2-type S-O coordination by a sulfenyl group. Addition of tBuNC to 1, 2, and 3 induces an absorption spectral change as a result of formation of an octahedral Co(III) complex. This interpretation is also supported by the crystal structures of PPh4[Co(L-O4)( tBuNC)] (4) and (PPh4)2[Co(L-O4)(CN)] (5). A water molecule interacts with 3 but cannot be activated as reported previously, as demonstrated by the lack of absorption spectral change in the pH range of 5.5-10.2. Interestingly, the coordinated tBuNC is hydrolyzed by 2 and 3 at pH 10.2 to produce tBuNH2 and CO molecule, but 1 does not react. These findings provide strong evidence that hydrolysis of tBuNC by NHase proceeds not by activation of the coordinated water molecule but by coordination of the substrate. The mechanism of the hydrolysis reaction of tBuNC is explained with support provided by DFT calculations; a positively polarized C atom of tBuNC on the Co(III) center is nucleophilically attacked by a hydroxide anion activated through an interaction of the sulfenyl/sulfinyl oxygen with the nucleophile.
Collapse
Affiliation(s)
- Takuma Yano
- Department of Frontier Materials, Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya 466-8555 , Japan
| | - Yuko Wasada-Tsutsui
- Department of Frontier Materials, Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya 466-8555 , Japan
| | - Tomohiro Ikeda
- Department of Frontier Materials, Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya 466-8555 , Japan
| | - Tomonori Shibayama
- Department of Frontier Materials, Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya 466-8555 , Japan
| | - Yuji Kajita
- Department of Applied Chemistry, Graduate School of Engineering , Aichi Institute of Technology , Yakusa, Toyota 470-0392 , Japan
| | - Tomohiko Inomata
- Department of Frontier Materials, Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya 466-8555 , Japan
| | - Yasuhiro Funahashi
- Department of Chemistry, Graduate School of Science , Osaka University , Machikaneyama , Toyonaka, Osaka 560-0043 , Japan
| | - Tomohiro Ozawa
- Department of Frontier Materials, Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya 466-8555 , Japan
| | - Hideki Masuda
- Department of Frontier Materials, Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya 466-8555 , Japan
| |
Collapse
|
3
|
Drover MW, Love JA, Schafer LL. 1,3-N,O-Complexes of late transition metals. Ligands with flexible bonding modes and reaction profiles. Chem Soc Rev 2017; 46:2913-2940. [DOI: 10.1039/c6cs00715e] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
1,3-N,O-Chelating ligands are ubiquitous in nature owing to their occurrence as α-chiral amino acids in metalloproteins.
Collapse
Affiliation(s)
- Marcus W. Drover
- Department of Chemistry
- The University of British Columbia Vancouver
- Canada
| | - Jennifer A. Love
- Department of Chemistry
- The University of British Columbia Vancouver
- Canada
| | - Laurel L. Schafer
- Department of Chemistry
- The University of British Columbia Vancouver
- Canada
| |
Collapse
|
4
|
Yano T, Ikeda T, Shibayama T, Inomata T, Funahashi Y, Ozawa T, Masuda H. Role of the Amide Carbonyl Groups in the Nitrile Hydratase Active Site for Nitrile Coordination Using Co(III) Complex with N 2S 3-type Ligand. CHEM LETT 2015. [DOI: 10.1246/cl.150084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takuma Yano
- Department of Materials Science, Graduate School of Engineering, Nagoya Institute of Technology
| | - Tomohiro Ikeda
- Department of Materials Science, Graduate School of Engineering, Nagoya Institute of Technology
| | - Tomonori Shibayama
- Department of Materials Science, Graduate School of Engineering, Nagoya Institute of Technology
| | - Tomohiko Inomata
- Department of Materials Science, Graduate School of Engineering, Nagoya Institute of Technology
| | - Yasuhiro Funahashi
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology
| | - Tomohiro Ozawa
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology
| | - Hideki Masuda
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology
| |
Collapse
|
5
|
Denny JA, Darensbourg MY. Metallodithiolates as ligands in coordination, bioinorganic, and organometallic chemistry. Chem Rev 2015; 115:5248-73. [PMID: 25948147 DOI: 10.1021/cr500659u] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Kumar D, Nguyen TN, Grapperhaus CA. Kinetic Effects of Sulfur Oxidation on Catalytic Nitrile Hydration: Nitrile Hydratase Insights from Bioinspired Ruthenium(II) Complexes. Inorg Chem 2014; 53:12372-7. [DOI: 10.1021/ic501695n] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Davinder Kumar
- Department of Chemistry, University of Louisville, 2320 South
Brook Street, Louisville, Kentucky 40292, United States
| | - Tho N. Nguyen
- Department of Chemistry, University of Louisville, 2320 South
Brook Street, Louisville, Kentucky 40292, United States
| | - Craig A. Grapperhaus
- Department of Chemistry, University of Louisville, 2320 South
Brook Street, Louisville, Kentucky 40292, United States
| |
Collapse
|
7
|
Staehle R, Losse S, Filipovic MR, Ivanović-Burmazović I, Vos JG, Rau S. Photocatalytic Generation of Hydrogen from Water under Aerobic Conditions. Chempluschem 2014. [DOI: 10.1002/cplu.201402174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Zhang Z, Suwabe T, Ishikawa M, Funahashi Y, Inomata T, Ozawa T, Masuda H. Highly selective binding of nitric oxide by CoIII and FeIII complexes. Dalton Trans 2013; 42:4470-8. [DOI: 10.1039/c2dt32708b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Al-Jeboori MJ, Al-Jebouri FA, Al-Azzawi MA. Metal complexes of a new class of polydentate Mannich bases: Synthesis and spectroscopic characterisation. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
10
|
Shearer J, Callan PE, Amie J. Use of metallopeptide based mimics demonstrates that the metalloprotein nitrile hydratase requires two oxidized cysteinates for catalytic activity. Inorg Chem 2010; 49:9064-77. [PMID: 20831172 PMCID: PMC3570060 DOI: 10.1021/ic101765h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitrile hydratases (NHases) are non-heme Fe(III) or non-corrin Co(III) containing metalloenzymes that possess an N(2)S(3) ligand environment with nitrogen donors derived from amidates and sulfur donors derived from cysteinates. A closely related enzyme is thiocyanate hydrolase (SCNase), which possesses a nearly identical active-site coordination environment as CoNHase. These enzymes are redox inactive and perform hydrolytic reactions; SCNase hydrolyzes thiocyanate anions while NHase converts nitriles into amides. Herein an active CoNHase metallopeptide mimic, [Co(III)NHase-m1] (NHase-m1 = AcNH-CCDLP-CGVYD-PA-COOH), that contains Co(III) in a similar N(2)S(3) coordination environment as CoNHase is reported. [Co(III)NHase-m1] was characterized by electrospray ionization-mass spectrometry (ESI-MS), gel-permeation chromatography (GPC), Co K-edge X-ray absorption spectroscopy (Co-S: 2.21 Å; Co-N: 1.93 Å), vibrational, and optical spectroscopies. We find that [Co(III)NHase-m1] will perform the catalytic conversion of acrylonitrile into acrylamide with up to 58 turnovers observed after 18 h at 25 °C (pH 8.0). FTIR data used in concert with calculated vibrational data (mPWPW91/aug-cc-TZVPP) demonstrates that the active form of [Co(III)NHase-m1] has a ligated SO(2) (ν = 1091 cm(-1)) moiety and a ligated protonated SO(H) (ν = 928 cm(-1)) moiety; when only one oxygenated cysteinate ligand (i.e., a mono-SO(2) coordination motif) or the bis-SO(2) coordination motif are found within [Co(III)NHase-m1] no catalytic activity is observed. Calculations of the thermodynamics of ligand exchange (B3LYP/aug-cc-TZVPP) suggest that the reason for this is that the SO(2)/SO(H) equatorial ligand motif promotes both water dissociation from the Co(III)-center and nitrile coordination to the Co(III)-center. In contrast, the under- or overoxidized motifs will either strongly favor a five coordinate Co(III)-center or strongly favor water binding to the Co(III)-center over nitrile binding.
Collapse
Affiliation(s)
- Jason Shearer
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA.
| | | | | |
Collapse
|
11
|
Rose MJ, Betterley NM, Oliver AG, Mascharak PK. Binding of Nitric Oxide to a Synthetic Model of Iron-Containing Nitrile Hydratase (Fe-NHase) and Its Photorelease: Relevance to Photoregulation of Fe-NHase by NO. Inorg Chem 2010; 49:1854-64. [DOI: 10.1021/ic902220a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Michael J. Rose
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| | - Nolan M. Betterley
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| | - Pradip K. Mascharak
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| |
Collapse
|
12
|
Arakawa T, Kawano Y, Katayama Y, Nakayama H, Dohmae N, Yohda M, Odaka M. Structural basis for catalytic activation of thiocyanate hydrolase involving metal-ligated cysteine modification. J Am Chem Soc 2010; 131:14838-43. [PMID: 19785438 DOI: 10.1021/ja903979s] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thiocyanate hydrolase (SCNase) is a member of a family of nitrile hydratase proteins, each of which contains a unique noncorrin cobalt center with two post-translationally modified cysteine ligands, cysteine-sulfenic acid or -sulfenate (Cys-SO(H)), and cysteine-sulfininate (Cys-SO(2)(-)), respectively. We have found that a partially matured recombinant SCNase was activated during storage. The crystal structures of SCNase before and after storage demonstrated that Cys-SO(2)(-) modification of gammaCys131 proceeded to completion prior to storage, while Cys-SO(H) modification of gammaCys133 occurred during storage. SCNase activity was suppressed when gammaCys133 was further oxidized to Cys-SO(2)(-). The correlation between the catalytic activity and the extent of the gammaCys133 modification indicates that the cysteine sulfenic acid modification of gammaCys133 is of primary importance in determining the activity of SCNase.
Collapse
Affiliation(s)
- Takatoshi Arakawa
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Rose MJ, Betterley NM, Mascharak PK. Thiolate S-Oxygenation Controls Nitric Oxide (NO) Photolability of a Synthetic Iron Nitrile Hydratase (Fe-NHase) Model Derived from Mixed Carboxamide/Thiolate Ligand. J Am Chem Soc 2009; 131:8340-1. [DOI: 10.1021/ja9004656] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael J. Rose
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 96064
| | - Nolan M. Betterley
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 96064
| | - Pradip K. Mascharak
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 96064
| |
Collapse
|
14
|
Yano T, Ozawa T, Masuda H. Structural and Functional Model Systems for Analysis of the Active Center of Nitrile Hydratase. CHEM LETT 2008. [DOI: 10.1246/cl.2008.672] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Yano T, Wasada-Tsutsui Y, Kajita Y, Shibayama T, Funahasi Y, Ozawa T, Masuda H. Effect of an Asymmetrically Arranged Equatorial Chelate Ring in an Active Site of Nitrile Hydratase. CHEM LETT 2008. [DOI: 10.1246/cl.2008.66] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Arakawa T, Kawano Y, Kataoka S, Katayama Y, Kamiya N, Yohda M, Odaka M. Structure of Thiocyanate Hydrolase: A New Nitrile Hydratase Family Protein with a Novel Five-coordinate Cobalt(III) Center. J Mol Biol 2007; 366:1497-509. [PMID: 17222425 DOI: 10.1016/j.jmb.2006.12.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2006] [Revised: 12/01/2006] [Accepted: 12/05/2006] [Indexed: 10/23/2022]
Abstract
Thiocyanate hydrolase (SCNase) of Thiobacillus thioparus THI115 is a cobalt(III)-containing enzyme catalyzing the degradation of thiocyanate to carbonyl sulfide and ammonia. We determined the crystal structures of the apo- and native SCNases at a resolution of 2.0 A. SCNases in both forms had a conserved hetero-dodecameric structure, (alphabetagamma)(4). Four alphabetagamma hetero-trimers were structurally equivalent. One alphabetagamma hetero-trimer was composed of the core domain and the betaN domain, which was located at the center of the molecule and linked the hetero-trimers with novel quaternary interfaces. In both the apo- and native SCNases, the core domain was structurally conserved between those of iron and cobalt-types of nitrile hydratase (NHase). Native SCNase possessed the post-translationally modified cysteine ligands, gammaCys131-SO(2)H and gammaCys133-SOH like NHases. However, the low-spin cobalt(III) was found to be in the distorted square-pyramidal geometry, which had not been reported before in any protein. The size as well as the electrostatic properties of the substrate-binding pocket was totally different from NHases with respect to the charge distribution and the substrate accessibility, which rationally explains the differences in the substrate preference between SCNase and NHase.
Collapse
Affiliation(s)
- Takatoshi Arakawa
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | | | |
Collapse
|