1
|
Wang VCC, Maji S, Chen PPY, Lee HK, Yu SSF, Chan SI. Alkane Oxidation: Methane Monooxygenases, Related Enzymes, and Their Biomimetics. Chem Rev 2017; 117:8574-8621. [PMID: 28206744 DOI: 10.1021/acs.chemrev.6b00624] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methane monooxygenases (MMOs) mediate the facile conversion of methane into methanol in methanotrophic bacteria with high efficiency under ambient conditions. Because the selective oxidation of methane is extremely challenging, there is considerable interest in understanding how these enzymes carry out this difficult chemistry. The impetus of these efforts is to learn from the microbes to develop a biomimetic catalyst to accomplish the same chemical transformation. Here, we review the progress made over the past two to three decades toward delineating the structures and functions of the catalytic sites in two MMOs: soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO). sMMO is a water-soluble three-component protein complex consisting of a hydroxylase with a nonheme diiron catalytic site; pMMO is a membrane-bound metalloenzyme with a unique tricopper cluster as the site of hydroxylation. The metal cluster in each of these MMOs harnesses O2 to functionalize the C-H bond using different chemistry. We highlight some of the common basic principles that they share. Finally, the development of functional models of the catalytic sites of MMOs is described. These efforts have culminated in the first successful biomimetic catalyst capable of efficient methane oxidation without overoxidation at room temperature.
Collapse
Affiliation(s)
- Vincent C-C Wang
- Institute of Chemistry, Academia Sinica , 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Suman Maji
- School of Chemical Engineering and Physical Sciences, Lovely Professional University , Jalandhar-Delhi G. T. Road (NH-1), Phagwara, Punjab India 144411
| | - Peter P-Y Chen
- Department of Chemistry, National Chung Hsing University , 250 Kuo Kuang Road, Taichung 402, Taiwan
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Steve S-F Yu
- Institute of Chemistry, Academia Sinica , 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Sunney I Chan
- Institute of Chemistry, Academia Sinica , 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan.,Department of Chemistry, National Taiwan University , No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.,Noyes Laboratory, 127-72, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
2
|
Li H, Xu Z, Zhao B, Jia Y, Ding R, Hou H, Fan Y. Nuclearity control of manganese polymers dependent on structural differences in the coligands and magnetic properties studies. CrystEngComm 2014. [DOI: 10.1039/c3ce41553h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Guillet GL, Sloane FT, Ermert DM, Calkins MW, Peprah MK, Knowles ES, Čižmár E, Abboud KA, Meisel MW, Murray LJ. Preorganized assembly of three iron(ii) or manganese(ii) β-diketiminate complexes using a cyclophane ligand. Chem Commun (Camb) 2013; 49:6635-7. [DOI: 10.1039/c3cc43395a] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
4
|
Lionetti D, Day MW, Agapie T. Metal-Templated Ligand Architectures for Trinuclear Chemistry: Tricopper Complexes and Their O 2 Reactivity. Chem Sci 2012; 4:785-790. [PMID: 23539341 DOI: 10.1039/c2sc21758a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A trinucleating framework was assmbled by templation of a heptadentate ligand around yttrium and lanthanides. The generated complexes orient three sets of two or three N-donors each for binding additional metal centers. Addition of three equivalents of copper(I) leads to the formation of tricopper(I) species. Reactions with dioxygen at low temperatures generate species whose spectroscopic features are consistent with a μ3,μ3-dioxo-tricopper complex. Reactivity studies were performed with a variety of substrates. The dioxo-tricopper species deprotonates weak acids, undergoes oxygen atom transfer with one equivalent of triphenylphosphine to yield triphenylphosphine oxide, and abstracts two hydrogen atom equivalents from tetramethylpiperidine-N-hydroxide (TEMPO-H). Thiophenols reduce the oxygenated species to a CuI3 complex and liberate two equivalents of disulfide, consistent with a four-electron four-proton process.
Collapse
Affiliation(s)
- Davide Lionetti
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd. MC 127-72, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
5
|
Do LH, Lippard SJ. Evolution of strategies to prepare synthetic mimics of carboxylate-bridged diiron protein active sites. J Inorg Biochem 2011; 105:1774-85. [PMID: 22113107 PMCID: PMC3232320 DOI: 10.1016/j.jinorgbio.2011.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/08/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
We present a comprehensive review of research conducted in our laboratory in pursuit of the long-term goal of reproducing the structures and reactivity of carboxylate-bridged diiron centers used in biology to activate dioxygen for the conversion of hydrocarbons to alcohols and related products. This article describes the evolution of strategies devised to achieve these goals and illustrates the challenges in getting there. Particular emphasis is placed on controlling the geometry and coordination environment of the diiron core, preventing formation of polynuclear iron clusters, maintaining the structural integrity of model complexes during reactions with dioxygen, and tuning the ligand framework to stabilize desired oxygenated diiron species. Studies of the various model systems have improved our understanding of the electronic and physical characteristics of carboxylate-bridged diiron units and their reactivity toward molecular oxygen and organic moieties. The principles and lessons that have emerged from these investigations will guide future efforts to develop more sophisticated diiron protein model complexes.
Collapse
Affiliation(s)
- Loi H. Do
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139. U.S.A
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139. U.S.A
| |
Collapse
|