1
|
Lai TY, Chen C, Chu K, Chien S, Ong T, Chiang M. Biologically inspired
3Fe4S
cluster as structural mimics of
FeMoco
M‐cluster. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202300062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
- Ting Yi Lai
- Institute of Chemistry Academia Sinica Taipei Taiwan
| | - Chang‐Ting Chen
- Institute of Chemistry Academia Sinica Taipei Taiwan
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Kai‐Ti Chu
- Institute of Chemistry Academia Sinica Taipei Taiwan
| | - Su‐Ying Chien
- Instrumentation Center National Taiwan University Taipei Taiwan
| | - Tiow‐Gan Ong
- Institute of Chemistry Academia Sinica Taipei Taiwan
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Ming‐Hsi Chiang
- Institute of Chemistry Academia Sinica Taipei Taiwan
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung Taiwan
| |
Collapse
|
2
|
Role of a Redox-Active Ligand Close to a Dinuclear Activating Framework. TOP ORGANOMETAL CHEM 2022. [DOI: 10.1007/3418_2022_77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Hogarth G, Orton G, Ghosh S, Sarker JC, Pugh D, Richmond MG, Hartl F, Alker L. Biomimetics of [FeFe]-hydrogenases incorporating redox-active ligands: Synthesis, redox and spectroelectrochemistry of diiron-dithiolate complexes with ferrocenyl-diphosphines as Fe4S4 surrogates. Dalton Trans 2022; 51:9748-9769. [DOI: 10.1039/d2dt00419d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[FeFe]-ase biomimics containing a redox-active ferrocenyl diphosphine have been prepared and their ability to reduce protons and oxidise H2 studied, including 1,1’-bis(diphenylphosphino)ferrocene (dppf) complexes Fe2(CO)4(-dppf)(-S(CH2)nS) (n = 2, edt; n...
Collapse
|
4
|
Natarajan M, Kumar N, Joshi M, Stein M, Kaur‐Ghumaan S. Mechanism of Diiron Hydrogenase Complexes Controlled by Nature of Bridging Dithiolate Ligand. ChemistryOpen 2022; 11:e202100238. [PMID: 34981908 PMCID: PMC8734113 DOI: 10.1002/open.202100238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/12/2021] [Indexed: 01/22/2023] Open
Abstract
Bio-inorganic complexes inspired by hydrogenase enzymes are designed to catalyze the hydrogen evolution reaction (HER). A series of new diiron hydrogenase mimic complexes with one or two terminal tris(4-methoxyphenyl)phosphine and different μ-bridging dithiolate ligands and show catalytic activity towards electrochemical proton reduction in the presence of weak and strong acids. A series of propane- and benzene-dithiolato-bridged complexes was synthesized, crystallized, and characterized by various spectroscopic techniques and quantum chemical calculations. Their electrochemical properties as well as the detailed reaction mechanisms of the HER are elucidated by density functional theory (DFT) methods. The nature of the μ-bridging dithiolate is critically controlling the reaction and performance of the HER of the complexes. In contrast, terminal phosphine ligands have no significant effects on redox activities and mechanism. Mono- or di-substituted propane-dithiolate complexes afford a sequential reduction (electrochemical; E) and protonation (chemical; C) mechanism (ECEC), while the μ-benzene dithiolate complexes follow a different reaction mechanism and are more efficient HER catalysts.
Collapse
Affiliation(s)
| | - Naveen Kumar
- Department of ChemistryUniversity of DelhiDelhi110007India
| | - Meenakshi Joshi
- Max-Planck-Institute for Dynamics of Complex Technical SystemsMolecular Simulations and Design GroupSandtorstrasse 139106MagdeburgGermany
| | - Matthias Stein
- Max-Planck-Institute for Dynamics of Complex Technical SystemsMolecular Simulations and Design GroupSandtorstrasse 139106MagdeburgGermany
| | | |
Collapse
|
5
|
Torres A, Collado A, Gómez-Gallego M, Ramírez de Arellano C, Sierra MA. Electrocatalytic Behavior of Tetrathiafulvalene (TTF) and Extended Tetrathiafulvalene (exTTF) [FeFe] Hydrogenase Mimics. ACS ORGANIC & INORGANIC AU 2021; 2:23-33. [PMID: 36855407 PMCID: PMC9954209 DOI: 10.1021/acsorginorgau.1c00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
TTF- and exTTF-containing [(μ-S2)Fe2(CO)6] complexes have been prepared by the photochemical reaction of TTF or exTTF and [(μ-S2)Fe2(CO)6]. These complexes are able to interact with PAHs. In the absence of air and in acid media an electrocatalytic dihydrogen evolution reaction (HER) occurs, similarly to analogous [(μ-S2)Fe2(CO)6] complexes. However, in the presence of air, the TTF and exTTF organic moieties strongly influence the electrochemistry of these systems. The reported data may be valuable in the design of [FeFe] hydrogenase mimics able to combine the HER properties of the [FeFe] cores with the unique TTF properties.
Collapse
Affiliation(s)
- Alejandro Torres
- Departamento
de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain,Center
for Innovation in Advanced Chemistry (ORFEO-CINQA), Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - Alba Collado
- Departamento
de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain,Center
for Innovation in Advanced Chemistry (ORFEO-CINQA), Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - Mar Gómez-Gallego
- Departamento
de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain,Center
for Innovation in Advanced Chemistry (ORFEO-CINQA), Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - Carmen Ramírez de Arellano
- Center
for Innovation in Advanced Chemistry (ORFEO-CINQA), Facultad de Química, Universidad Complutense, 28040 Madrid, Spain,Departamento
de Química Orgánica, Universidad
de Valencia, 46100 Valencia, Spain
| | - Miguel A. Sierra
- Departamento
de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain,Center
for Innovation in Advanced Chemistry (ORFEO-CINQA), Facultad de Química, Universidad Complutense, 28040 Madrid, Spain,Email for M.A.S.:
| |
Collapse
|
6
|
Abul-Futouh H, Almazahreh LR, Abaalkhail SJ, Görls H, Stripp ST, Weigand W. Ligand effects on structural, protophilic and reductive features of stannylated dinuclear iron dithiolato complexes. NEW J CHEM 2021. [DOI: 10.1039/d0nj04790b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and characterization of Fe2(CO)5(L){μ-(SCH2)2SnMe2} (L = PPh3 (2) and P(OMe)3 (3)) derived from the parent hexacarbonyl complex Fe2(CO)6{μ-(SCH2)2}SnMe2 (1) are reported.
Collapse
Affiliation(s)
- Hassan Abul-Futouh
- Department of Pharmacy
- Al-Zaytoonah University of Jordan
- Amman 11733
- Jordan
| | - Laith R. Almazahreh
- ERCOSPLAN Ingenieurbüro Anlagentechnik GmbH
- 99096 Erfurt
- Germany
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
| | - Sara J. Abaalkhail
- Department of Pharmacy
- Al-Zaytoonah University of Jordan
- Amman 11733
- Jordan
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Sven T. Stripp
- Bioinorganic Spectroscopy
- Department of Physics
- Freie Universität Berlin
- 1495 Berlin
- Germany
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| |
Collapse
|
7
|
Kleinhaus JT, Wittkamp F, Yadav S, Siegmund D, Apfel UP. [FeFe]-Hydrogenases: maturation and reactivity of enzymatic systems and overview of biomimetic models. Chem Soc Rev 2021; 50:1668-1784. [DOI: 10.1039/d0cs01089h] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
[FeFe]-hydrogenases recieved increasing interest in the last decades. This review summarises important findings regarding their enzymatic reactivity as well as inorganic models applied as electro- and photochemical catalysts.
Collapse
Affiliation(s)
| | | | - Shanika Yadav
- Inorganic Chemistry I
- Ruhr University Bochum
- 44801 Bochum
- Germany
| | - Daniel Siegmund
- Department of Electrosynthesis
- Fraunhofer UMSICHT
- 46047 Oberhausen
- Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I
- Ruhr University Bochum
- 44801 Bochum
- Germany
- Department of Electrosynthesis
| |
Collapse
|
8
|
Mebi CA, Gerasimchuk NN. Macrocyclic tetranuclear double-butterfly Fe/S carbonyl clusters as [FeFe]-hydrogenase models. Supramol Chem 2020. [DOI: 10.1080/10610278.2020.1837828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Charles A. Mebi
- Department of Physical Sciences, Arkansas Tech University, Russellville, AR, USA
| | | |
Collapse
|
9
|
Zhao PH, Ma ZY, Hu MY, Jing XB, Wang YH, Liu XF. The effect of a pendant amine in phosphine ligand on the structure and electrochemical property of diiron dithiolate complexes. J COORD CHEM 2019. [DOI: 10.1080/00958972.2018.1506585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Pei-Hua Zhao
- School of Materials Science and Engineering, North University of China, Taiyuan, P. R. China
| | - Zhong-Yi Ma
- School of Materials Science and Engineering, North University of China, Taiyuan, P. R. China
| | - Meng-Yuan Hu
- School of Materials Science and Engineering, North University of China, Taiyuan, P. R. China
| | - Xing-Bin Jing
- School of Materials Science and Engineering, North University of China, Taiyuan, P. R. China
| | - Yan-Hong Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, P. R. China
| | - Xu-Feng Liu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, P. R. China
| |
Collapse
|
10
|
Adams H, Morris MJ, Robertson CC, Tunnicliffe HCI. Synthesis of Mono- and Diiron Dithiolene Complexes as Hydrogenase Models by Dithiolene Transfer Reactions, Including the Crystal Structure of [{Ni(S 2C 2Ph 2)} 6]. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Harry Adams
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Michael J. Morris
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Craig C. Robertson
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | | |
Collapse
|
11
|
Hydrogenase Biomimetics with Redox-Active Ligands: Synthesis, Structure, and Electrocatalytic Studies on [Fe2(CO)4(κ2-dppn)(µ-edt)] (edt = Ethanedithiolate; dppn = 1,8-bis(Diphenylphosphino)Naphthalene). INORGANICS 2018. [DOI: 10.3390/inorganics6040122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Addition of the bulky redox-active diphosphine 1,8-bis(diphenylphosphino)naphthalene (dppn) to [Fe2(CO)6(µ-edt)] (1) (edt = 1,2-ethanedithiolate) affords [Fe2(CO)4(κ2-dppn)(µ-edt)] (3) as the major product, together with small amounts of a P–C bond cleavage product [Fe2(CO)5{κ1-PPh2(1-C10H7)}(µ-edt)] (2). The redox properties of 3 have been examined by cyclic voltammetry and it has been tested as a proton-reduction catalyst. It undergoes a reversible reduction at E1/2 = −2.18 V and exhibits two overlapping reversible oxidations at E1/2 = −0.08 V and E1/2 = 0.04 V. DFT calculations show that while the Highest Occupied Molecular Orbital (HOMO) is metal-centred (Fe–Fe σ-bonding), the Lowest Unoccupied Molecular Orbital (LUMO) is primarily ligand-based, but also contains an antibonding Fe–Fe contribution, highlighting the redox-active nature of the diphosphine. It is readily protonated upon addition of strong acids and catalyzes the electrochemical reduction of protons at Ep = −2.00 V in the presence of CF3CO2H. The catalytic current indicates that it is one of the most efficient diiron electrocatalysts for the reduction of protons, albeit operating at quite a negative potential.
Collapse
|
12
|
Isegawa M, Sharma AK, Ogo S, Morokuma K. Electron and Hydride Transfer in a Redox-Active NiFe Hydride Complex: A DFT Study. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Miho Isegawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Akhilesh K. Sharma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Seiji Ogo
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
13
|
Lu DT, He J, Yu XY, Liu XF, Li YL, Jiang ZQ. Diiron ethanedithiolate complexes with pendant ferrocene: Synthesis, characterization and electrochemistry. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Aminophosphine-substituted diiron dithiolate complexes: Synthesis, crystal structure, and electrocatalytic investigation. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.09.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Abul-Futouh H, Almazahreh LR, Harb MK, Görls H, El-Khateeb M, Weigand W. [FeFe]-Hydrogenase H-Cluster Mimics with Various -S(CH 2) nS- Linker Lengths (n = 2-8): A Systematic Study. Inorg Chem 2017; 56:10437-10451. [PMID: 28809489 DOI: 10.1021/acs.inorgchem.7b01398] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of the nature of the dithiolato ligand on the physical and electrochemical properties of synthetic H-cluster mimics of the [FeFe]-hydrogenase is still of significant concern. In this report we describe the cyclization of various alkanedithiols to afford cyclic disulfide, tetrasulfide, and hexasulfide compounds. The latter compounds were used as proligands for the synthesis of a series of [FeFe]-hydrogenase H-cluster mimics having the general formulas [Fe2(CO)6{μ-S(CH2)nS}] (n = 4-8), [Fe2(CO)6{μ-S(CH2)nS}]2 (n = 6-8), and [Fe2(CO)6{(μ-S(CH2)nS)2}] (n = 6-8). The resulting complexes were characterized by 1H and 13C{1H} NMR and IR spectroscopic techniques, mass spectrometry, and elemental analysis as well as X-ray analysis. The purpose of this research was to study the influence of the systematic increase of n from 2 to 7 on the redox potentials of the models and the catalytic ability in the presence of acetic acid (AcOH) by applying cyclic voltammetry.
Collapse
Affiliation(s)
- Hassan Abul-Futouh
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena , Humboldt Str. 8, 07743 Jena, Germany
| | - Laith R Almazahreh
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena , Humboldt Str. 8, 07743 Jena, Germany.,ERCOSPLAN Ingenieurbüro Anlagentechnik GmbH , Arnstädter Straße 28, 99096 Erfurt, Germany
| | - Mohammad Kamal Harb
- Department of Pharmacy, Al-Zytoonah University of Jordan , P.O. Box 130, Amman 11733, Jordan
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena , Humboldt Str. 8, 07743 Jena, Germany
| | - Mohammad El-Khateeb
- Chemistry Department, Jordan University of Science and Technology , Irbid 22110, Jordan
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena , Humboldt Str. 8, 07743 Jena, Germany
| |
Collapse
|
16
|
Schilter D, Gray DL, Fuller AL, Rauchfuss TB. Synthetic Models for Nickel-Iron Hydrogenase Featuring Redox-Active Ligands. Aust J Chem 2017; 70:505-515. [PMID: 28819328 PMCID: PMC5555595 DOI: 10.1071/ch16614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nickel-iron hydrogenase enzymes efficiently and reversibly interconvert protons, electrons, and dihydrogen. These redox proteins feature iron-sulfur clusters that relay electrons to and from their active sites. Reported here are synthetic models for nickel-iron hydrogenase featuring redox-active auxiliaries that mimic the iron-sulfur cofactors. The complexes prepared are NiII(μ-H)FeIIFeII species of formula [(diphosphine)Ni(dithiolate)(μ-H)Fe(CO)2(ferrocenylphosphine)]+ or NiIIFeIFeII complexes [(diphosphine)Ni(dithiolate)Fe(CO)2(ferrocenylphosphine)]+ (diphosphine = Ph2P(CH2)2PPh2 or Cy2P(CH2)2PCy2; dithiolate = -S(CH2)3S-; ferrocenylphosphine = diphenylphosphinoferrocene, diphenylphosphinomethyl(nonamethylferrocene) or 1,1'-bis(diphenylphosphino)ferrocene). The hydride species is a catalyst for hydrogen evolution, while the latter hydride-free complexes can exist in four redox states - a feature made possible by the incorporation of the ferrocenyl groups. Mixed-valent complexes of 1,1'-bis(diphenylphosphino)ferrocene have one of the phosphine groups unbound, with these species representing advanced structural models with both a redox-active moiety (the ferrocene group) and a potential proton relay (the free phosphine) proximal to a nickel-iron dithiolate.
Collapse
Affiliation(s)
- David Schilter
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919, Republic of Korea
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Danielle L. Gray
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Amy L. Fuller
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave., Urbana, IL 61801, USA
| |
Collapse
|
17
|
Yen TH, He ZC, Lee GH, Tseng MC, Shen YH, Tseng TW, Liaw WF, Chiang MH. Reduced thione ligation is preferred over neutral phosphine ligation in diiron biomimics regarding electronic functionality: a spectroscopic and computational investigation. Chem Commun (Camb) 2017; 53:332-335. [DOI: 10.1039/c6cc08042a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Sulfur means superiority: effective electronic communication and buffering by sulfur ligation.
Collapse
Affiliation(s)
- Tao-Hung Yen
- Institute of Chemistry
- Academia Sinica
- Taipei 115
- Taiwan
- Molecular Science Technology Program
| | - Zong-Cheng He
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center
- National Taiwan University
- Taipei 106
- Taiwan
| | | | - Yu-Hsuan Shen
- Department of Chemistry
- National Taiwan University
- Taipei 106
- Taiwan
| | - Tien-Wen Tseng
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 300
- Taiwan
| | - Ming-Hsi Chiang
- Institute of Chemistry
- Academia Sinica
- Taipei 115
- Taiwan
- Molecular Science Technology Program
| |
Collapse
|
18
|
Pandey IK, Natarajan M, Hemlata, Hussain F, Kaur-Ghumaan S. Diiron Complexes [Fe2(CO)5(μ-pdt/Mebdt)(L)] Containing a Chelating Diphosphine Ligand L=(Oxydi-2,1-phenylene)bis(diphenylphosphine): Bioinspired [FeFe] Hydrogenase Model Complexes. ChemistrySelect 2016. [DOI: 10.1002/slct.201601216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Mookan Natarajan
- Department of Chemistry; University of Delhi; Delhi- 110007 India
| | - Hemlata
- Department of Chemistry; University of Delhi; Delhi- 110007 India
| | - Firasat Hussain
- Department of Chemistry; University of Delhi; Delhi- 110007 India
| | | |
Collapse
|
19
|
Rana S, Ghosh S, Hossain MK, Rahaman A, Hogarth G, Kabir SE. Hydrogenase biomimetics: structural and spectroscopic studies on diphosphine-substituted derivatives of Fe2(CO)6(µ-edt) (edt = ethanedithiolate) and Fe2(CO)6(µ-tdt) (tdt = 1,3-toluenedithiolate). TRANSIT METAL CHEM 2016. [DOI: 10.1007/s11243-016-0097-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Ghosh S, Rahaman A, Holt KB, Nordlander E, Richmond MG, Kabir SE, Hogarth G. Hydrogenase biomimetics with redox-active ligands: Electrocatalytic proton reduction by [Fe2(CO)4(κ2-diamine)(μ-edt)] (diamine = 2,2′-bipy, 1,10-phen). Polyhedron 2016. [DOI: 10.1016/j.poly.2016.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Jing XB, Ma D, Zhao PH, Li YL. Synthesis and structural characterization of iron–sulfur complexes with hydrophilic nitrogen–phosphorus ligands. TRANSIT METAL CHEM 2016. [DOI: 10.1007/s11243-016-0076-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Chen XQ, Liu XF, Jiang ZQ, Zhang YX, Li X, Tian XN, Liu XH. Synthesis and characterization of diiron ethanedithiolate complexes with monosubstituted phosphine ligands. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1183772] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Xiao-Qin Chen
- College of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Xu-Feng Liu
- College of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Zhong-Qing Jiang
- College of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Ying-Xin Zhang
- College of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Xie Li
- College of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Xiao-Ning Tian
- College of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, China
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
23
|
Yoshida J, Sugawara K, Yuge H, Okabayashi J. Bis(acetylacetonato)bis(pyrazolato)ruthenate(iii) as a redox-active scorpionate ligand. Dalton Trans 2015; 43:16066-73. [PMID: 25238163 DOI: 10.1039/c4dt02331e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The potential of a new anionic octahedral metal complex [Ru(III)(acac)2(pz)2](-) ((-)) (pzH = pyrazole) as a ligand with a scorpionate coordination behaviour like tris(pyrazolyl)borate (tp) and reversible redox activity is presented. Trinuclear metal complexes, [Ru(III)2Zn(II)(acac)4(pz)4] () and [Ru(II)Ru(III)2(acac)4(pz)4] (), were each synthesized by the reaction of ZnCl2 or Ru3(CO)12 with [Ru(III)(acac)2(pz)(pzH)] (H) that is in situ deprotonated and acts as a precursor of (-). Single-crystal X-ray diffraction studies clarified that (-) acts as a scorpionate ligand; two (-) units in and one unit in function as bidentate ligands with two pyrazolates as pincers, while another (-) unit in functions as a tridentate ligand with one oxygen atom as a tail in addition to the two pyrazolate pincers. Moreover, and showed reversible multi-stage redox behaviours based on the Ru(II)/Ru(III) and Ru(III)/Ru(IV) couples of the (-) units in the cyclic voltammetry (CV) measurements. Based on the X-ray, IR, and CV measurements and the comparison with other Ru(ii) complexes with tp derivatives, the (-) unit was found to act as a redox-active scorpionate with electron withdrawing properties compared to the tp.
Collapse
Affiliation(s)
- Jun Yoshida
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0329, Japan.
| | | | | | | |
Collapse
|
24
|
Chu KT, Liu YC, Huang YL, Lee GH, Tseng MC, Chiang MH. Redox Communication within Multinuclear Iron-Sulfur Complexes Related to Electronic Interplay in the Active Site of [FeFe]Hydrogenase. Chemistry 2015; 21:6852-61. [DOI: 10.1002/chem.201406101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Indexed: 11/08/2022]
|
25
|
Almazahreh LR, Imhof W, Talarmin J, Schollhammer P, Görls H, El-khateeb M, Weigand W. Ligand effects on the electrochemical behavior of [Fe2(CO)5(L){μ-(SCH2)2(Ph)PO}] (L = PPh3, P(OEt)3) hydrogenase model complexes. Dalton Trans 2015; 44:7177-89. [DOI: 10.1039/c5dt00064e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this paper we study the influence of substituting one CO ligand in [Fe2(CO)6{μ-(SCH2)2(Ph)PO}] (1) by better σ-donors (PPh3(2) and P(OMe)3(3)) in relation to the electrochemical behavior.
Collapse
Affiliation(s)
- Laith R. Almazahreh
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- D-07743 Jena
- Germany
| | - Wolfgang Imhof
- Institut für Integrierte Naturwissenschaften
- Universität Koblenz-Landau
- D-56070 Koblenz
- Germany
| | - Jean Talarmin
- UMR CNRS 6521
- Université de Bretagne Occidentale
- 29238 Brest-Cedex
- France
| | | | - Helmar Görls
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- D-07743 Jena
- Germany
| | - Mohammad El-khateeb
- Chemistry Department
- Jordan University of Science and Technology
- 22110 Irbid
- Jordan
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- D-07743 Jena
- Germany
| |
Collapse
|
26
|
|
27
|
Lansing JC, Camara JM, Gray DE, Rauchfuss TB. Hydrogen Production Catalyzed by Bidirectional, Biomimetic Models of the [FeFe]-Hydrogenase Active Site. Organometallics 2014; 33:5897-5906. [PMID: 25364093 PMCID: PMC4210170 DOI: 10.1021/om5004013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Indexed: 12/18/2022]
Abstract
Active site mimics of [FeFe]-hydrogenase are shown to be bidirectional catalysts, producing H2 upon treatment with protons and reducing equivalents. This reactivity complements the previously reported oxidation of H2 by these same catalysts in the presence of oxidants. The complex Fe2(adtBn)(CO)3(dppv)(PFc*Et2 ) ([1]0; adtBn = (SCH2)2NBn, dppv = cis-1,2-bis(diphenylphosphino)ethylene, PFc*Et2 = Et2PCH2C5Me4FeCp*) reacts with excess [H(OEt2)2]BArF4 (BArF4- = B(C6H3-3,5-(CF3)2)4-) to give ∼0.5 equiv of H2 and [Fe2(adtBnH)(CO)3(dppv)(PFc*Et2 )]2+ ([1H]2+). The species [1H]2+ consists of a ferrocenium ligand, an N-protonated amine, and an FeIFeI core. In the presence of additional reducing equivalents in the form of decamethylferrocene (Fc*), hydrogen evolution is catalytic, albeit slow. The related catalyst Fe2(adtBn)(CO)3(dppv)(PMe3) (3) behaves similarly in the presence of Fc*, except that in the absence of excess reducing agent it converts to the catalytically inactive μ-hydride derivative [μ-H3]+. Replacement of the adt in [1]0 with propanedithiolate (pdt) results in a catalytically inactive complex. In the course of synthesizing [FeFe]-hydrogenase mimics, new routes to ferrocenylphosphine ligands and nonamethylferrocene were developed.
Collapse
Affiliation(s)
- James C Lansing
- Department of Chemistry, University of Illinois 600 S. Goodwin Avenue Urbana, Illinois 61801, United States
| | - James M Camara
- Department of Chemistry, University of Illinois 600 S. Goodwin Avenue Urbana, Illinois 61801, United States
| | - Danielle E Gray
- Department of Chemistry, University of Illinois 600 S. Goodwin Avenue Urbana, Illinois 61801, United States
| | - Thomas B Rauchfuss
- Department of Chemistry, University of Illinois 600 S. Goodwin Avenue Urbana, Illinois 61801, United States
| |
Collapse
|
28
|
Iron carbonyl cluster complexes with monophosphine ligands: synthesis, characterization, and crystal structure. TRANSIT METAL CHEM 2014. [DOI: 10.1007/s11243-014-9825-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Zhao PH, Li XH, Liu YF, Liu YQ. Facile synthesis, X-ray analysis, and spectroscopic studies of di-iron propanedithiolate complexes with tris(aromatic)phosphine ligands. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.903329] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Pei-Hua Zhao
- Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, College of Materials Science and Engineering, North University of China, Taiyuan, PR China
| | - Xin-Hang Li
- Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, College of Materials Science and Engineering, North University of China, Taiyuan, PR China
| | - Yun-Feng Liu
- College of Public Health, Shanxi Medical University, Taiyuan, PR China
| | - Ya-Qing Liu
- Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, College of Materials Science and Engineering, North University of China, Taiyuan, PR China
| |
Collapse
|
30
|
Synthesis, Characterization, and Crystal Structure of Tertiary Phosphine-Substituted Diiron Propanedithiolate Complexes. J CLUST SCI 2014. [DOI: 10.1007/s10876-014-0711-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Song L, Cao M, Du Z, Feng Z, Ma Z, Song H. CO Substitution Reactions of Diiron Complexes [{(μ‐SCH
2
)
2
X}Fe
2
(CO)
6
] and [{(μ‐SeCH
2
)
2
X}Fe
2
(CO)
6
] (X = O, CH
2
) with Ph
2
PCl/Me
3
NO to Give Ph
2
PCl‐, Ph
2
PNMe
2
‐, and Ph
2
PP(=O)Ph
2
‐Substituted Complexes Related to [FeFe] Hydrogenases. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201301553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Li‐Cheng Song
- Department of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China, http://www.nankai.edu.cn
| | - Meng Cao
- Department of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China, http://www.nankai.edu.cn
| | - Zong‐Qiang Du
- Department of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China, http://www.nankai.edu.cn
| | - Zhan‐Heng Feng
- Department of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China, http://www.nankai.edu.cn
| | - Zhen Ma
- Department of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China, http://www.nankai.edu.cn
| | - Hai‐Bin Song
- Department of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China, http://www.nankai.edu.cn
| |
Collapse
|
32
|
Yen TH, Chu KT, Chiu WW, Chien YC, Lee GH, Chiang MH. Synthesis and characterization of the diiron biomimics bearing phosphine borane for hydrogen formation. Polyhedron 2013. [DOI: 10.1016/j.poly.2013.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Greco C. Towards [NiFe]-hydrogenase biomimetic models that couple H2 binding with functionally relevant intramolecular electron transfers: a quantum chemical study. Dalton Trans 2013; 42:13845-54. [PMID: 23921968 DOI: 10.1039/c3dt50836f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
[FeFe]- and [NiFe]-hydrogenases are dihydrogen-evolving metalloenzymes that share striking structural and functional similarities, despite being phylogenetically unrelated. Most notably, they are able to combine substrate binding and redox functionalities, which has important bearings on their efficiency. Model complexes of [FeFe]-hydrogenases that are able to couple H2 binding with a substrate-dependent intramolecular electron transfer promoting dihydrogen activation were recently shown to reproduce the complex redox chemistry of the all-iron enzyme. Notably, coupling of H2 binding and intramolecular redox events was proposed to have a key role also in [NiFe]-hydrogenases, but this feature is not reproduced in currently available nickel-iron biomimetic compounds. In the present study, we exploit dedicated density functional theory approaches to show that H2 binding and activation on a NiFe core can be favored by the installment of conveniently substituted isocyanoferrocenes, thanks to their ability to undergo intramolecular reduction upon substrate binding. Our results support the concept that a unified view on hydrogenase chemistry is a key element to direct future efforts in the modeling of microbial H2 metabolism.
Collapse
Affiliation(s)
- Claudio Greco
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor str. 2, 12489 Berlin, Germany
| |
Collapse
|
34
|
Greco C. H2 binding and splitting on a new-generation [FeFe]-hydrogenase model featuring a redox-active decamethylferrocenyl phosphine ligand: a theoretical investigation. Inorg Chem 2013; 52:1901-8. [PMID: 23374093 DOI: 10.1021/ic302118h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[FeFe]-hydrogenases are dihydrogen-evolving metalloenzymes that are able to combine substrate binding and redox functionalities, a feature that has important bearing on their efficiency. New-generation bioinspired systems such as Fe(2)[(SCH(2))(2)NBn](CO)(3)(Cp*Fe(C(5)Me(4)CH(2)PEt(2)))(dppv) were shown to mimic H(2) oxidation and splitting processes performed by the [FeFe]-hydrogenase/ferredoxin system, and key mechanistic aspects of such reaction are theoretically investigated in the present contribution. We found that H(2) binding and heterolytic cleavage take place concomitantly on DFT models of the synthetic catalyst, due to a substrate-dependent intramolecular redox process that promotes dihydrogen activation. Therefore, formation of an iron-dihydrogen complex as a reaction intermediate is excluded in the biomimetic system, at variance with the case of the enzyme. H(2) uptake at the synthetic system also requires an energetically disfavored isomerization of the amine group acting as a base during splitting. A possible strategy to stabilize the conformation competent for H(2) binding is proposed, along with an analysis of the reactivity of a triiron complex in which di(thiomethyl)amine--the chelating group naturally occurring in [FeFe]-hydrogenases--substitutes the benzyl-containing dithiolate ligand.
Collapse
Affiliation(s)
- Claudio Greco
- Institut für Chemie, Humboldt-Universität zu Berlin , Brook-Taylor strasse 2, 12489 Berlin, Germany.
| |
Collapse
|
35
|
Roy S, Groy TL, Jones AK. Biomimetic model for [FeFe]-hydrogenase: asymmetrically disubstituted diiron complex with a redox-active 2,2′-bipyridyl ligand. Dalton Trans 2013; 42:3843-53. [DOI: 10.1039/c2dt32457a] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Song LC, Li QL, Feng ZH, Sun XJ, Xie ZJ, Song HB. Synthesis, characterization, and electrochemical properties of diiron propaneditellurolate (PDTe) complexes as active site models of [FeFe]-hydrogenases. Dalton Trans 2013; 42:1612-26. [DOI: 10.1039/c2dt31976d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Song LC, Wang LX, Jia GJ, Li QL, Ming JB. Synthesis, Structural Characterization, and Properties of Some Functionalized Phosphine-Containing Diiron Complexes As Models for the Active Site of [FeFe]-Hydrogenases. Organometallics 2012. [DOI: 10.1021/om300418z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry, State Key
Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Liang-Xing Wang
- Department of Chemistry, State Key
Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Guo-Jun Jia
- Department of Chemistry, State Key
Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Qian-Li Li
- Department of Chemistry, State Key
Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Jiang-Bo Ming
- Department of Chemistry, State Key
Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
38
|
Liu YC, Yen TH, Tseng YJ, Hu CH, Lee GH, Chiang MH. Electron delocalization from the fullerene attachment to the diiron core within the active-site mimics of [FeFe]hydrogenase. Inorg Chem 2012; 51:5997-9. [PMID: 22591027 DOI: 10.1021/ic3007298] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Attachment of the redox-active C(60)(H)PPh(2) group modulates the electronic structure of the Fe(2) core in [(μ-bdt)Fe(2)(CO)(5)(C(60)(H)PPh(2))]. The neutral complex is characterized by X-ray crystallography, IR, NMR spectroscopy, and cyclic voltammetry. When it is reduced by one electron, the spectroscopic and density functional theory results indicate that the Fe(2) core is partially spin-populated. In the doubly reduced species, extensive electron communication occurs between the reduced fullerene unit and the Fe(2) centers as displayed in the spin-density plot. The results suggest that the [4Fe4S] cluster within the H cluster provides an essential role in terms of the electronic factor.
Collapse
Affiliation(s)
- Yu-Chiao Liu
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | | | | | | |
Collapse
|
39
|
Gimbert-Suriñach C, Bhadbhade M, Colbran SB. Bridgehead Hydrogen Atoms Are Important: Unusual Electrochemistry and Proton Reduction at Iron Dimers with Ferrocenyl-Substituted Phosphido Bridges. Organometallics 2012. [DOI: 10.1021/om201126w] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Carolina Gimbert-Suriñach
- School of Chemistry and ‡Mark Wainwright Analytical Centre, University of New South Wales, Sydney,
New South Wales 2052, Australia
| | - Mohan Bhadbhade
- School of Chemistry and ‡Mark Wainwright Analytical Centre, University of New South Wales, Sydney,
New South Wales 2052, Australia
| | - Stephen B. Colbran
- School of Chemistry and ‡Mark Wainwright Analytical Centre, University of New South Wales, Sydney,
New South Wales 2052, Australia
| |
Collapse
|
40
|
Camara JM, Rauchfuss TB. Combining acid-base, redox and substrate binding functionalities to give a complete model for the [FeFe]-hydrogenase. Nat Chem 2011; 4:26-30. [PMID: 22169868 DOI: 10.1038/nchem.1180] [Citation(s) in RCA: 266] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/23/2011] [Indexed: 01/21/2023]
Abstract
Some enzymes function by coupling substrate turnover with electron transfer from a redox cofactor such as ferredoxin. In the [FeFe]-hydrogenases, nature's fastest catalysts for the production and oxidation of H(2), the one-electron redox by a ferredoxin complements the one-electron redox by the diiron active site. In this Article, we replicate the function of the ferredoxins with the redox-active ligand Cp*Fe(C(5)Me(4)CH(2)PEt(2)) (FcP*). FcP* oxidizes at mild potentials, in contrast to most ferrocene-based ligands, which suggests that it might be a useful mimic of ferredoxin cofactors. The specific model is Fe(2)[(SCH(2))(2)NBn](CO)(3)(FcP*)(dppv) (1), which contains the three functional components of the active site: a reactive diiron centre, an amine as a proton relay and, for the first time, a one-electron redox module. By virtue of the synthetic redox cofactor, [1](2+) exhibits unique reactivity towards hydrogen and CO. In the presence of excess oxidant and base, H(2) oxidation by [1](2+) is catalytic.
Collapse
Affiliation(s)
- James M Camara
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
41
|
Greco C, De Gioia L. A theoretical study on the enhancement of functionally relevant electron transfers in biomimetic models of [FeFe]-hydrogenases. Inorg Chem 2011; 50:6987-95. [PMID: 21728321 DOI: 10.1021/ic200297d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances aimed at modeling the chemistry of the active site of [FeFe]-hydrogenases (the H-cluster, composed by a catalytic Fe(2)S(2) subcluster and an Fe(4)S(4) portion) have led to the synthesis of binuclear coordination compounds containing a noninnocent organophosphine ligand [2,3-bis(diphenylphosphino)maleic anhydride, bma] that is able to undergo monoelectron reduction, analogously to the tetranuclear Fe(4)S(4) subcluster portion of the H-cluster. However, such a synthetic model was shown to feature negligible electronic communication between the noninnocent ligand and the remaining portion of the cluster, at variance with the enzyme active site. Here, we report a theoretical investigation that shows why the electron transfer observed in the enzyme upon protonation of the catalytic Fe(2)S(2) subsite cannot take place in the bma-containing cluster. In addition, we show that targeted modifications of the bma ligand are sufficient to restore the electronic communication within the model, such that electron density can be more easily withdrawn from the noninnocent ligand, as a result of protonation of the iron centers. Similar results were also obtained with a ligand derived from cobaltocene. The relevance of our findings is discussed from the perspective of biomimetic reproduction of proton reduction to yield molecular hydrogen.
Collapse
Affiliation(s)
- Claudio Greco
- Department of Biotechnology and Biosciences, Milan-Bicocca University, Piazza della Scienza 2, 20126, Milan, Italy.
| | | |
Collapse
|