1
|
Do TH, Haungs DA, Chin WY, Jerit JT, VanderZwaag A, Brown SN. Modulation of Isomerization and Ligand Exchange Rates by π Bonding in Bis(iminoxolene)iridium Pyridine Complexes. Inorg Chem 2023. [PMID: 37437186 DOI: 10.1021/acs.inorgchem.3c01717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The bis(iminoxolene)iridium complex (Diso)2IrCl (Diso = N-(2,6-diisopropylphenyl)-4,6-di-tert-butyl-2-imino-o-benzoquinone) reacts with pyridine to give trans-(Diso)2Ir(py)Cl as the kinetic product, with cis-(Diso)2Ir(py)Cl formed as the exclusive thermodynamic product upon heating. Electronic spectra and density functional theory calculations point to very similar electronic structures for the cis and trans isomers, with a nonbonding iminoxolene-centered HOMO and a metal-iminoxolene π* LUMO. The triplet states of cis-(Diso)2Ir(py)Cl and cis-[(Diso)2Ir(py)2]+ (but not trans-(Diso)2Ir(py)Cl) are unusually low in energy (1000-1500 cm-1 above the singlets), as shown by variable-temperature NMR spectroscopy. The low-energy triplets are attributed to a change in dihedral angle in the iminoxolenes, which allows a partial π interaction that cannot be achieved in the trans octahedral compounds. Mechanistic studies of the trans-cis isomerization in toluene indicate that the reaction proceeds via isomerization of the five-coordinate species to a form with cis iminoxolene ligands and an apical oxygen. This form is high in energy due to the loss of a secondary iminoxolene-to-iridium π-donor interaction that is possible in the trans form but not in the cis form for the square pyramidal structures. This stereoelectronic effect, combined with the poorer binding of pyridine in trans-(Diso)2Ir(py)Cl due to the interactions of the N-aryl substituents with the pyridine, makes the pyridine dissociate faster from the trans isomer by a factor of 108 at room temperature.
Collapse
Affiliation(s)
- Thomas H Do
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - David A Haungs
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - William Y Chin
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Jack T Jerit
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Analena VanderZwaag
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Seth N Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| |
Collapse
|
2
|
Haungs DA, Brown SN. Slicing the π in Three Unequal Pieces: Iridium Complexes with Alkyne, Iminoxolene, and Dioxolene Ligands. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David A. Haungs
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Seth N. Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| |
Collapse
|
3
|
Sharma A, Mejia K, Ueno H, Zhou W, Chiang L. Copper complexes of strongly electron rich and deficient salen ligands. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Ali A, Bhowmik S, Barman SK, Mukhopadhyay N, Glüer Nee Schiewer CE, Lloret F, Meyer F, Mukherjee R. Iron(III) Complexes of a Hexadentate Thioether-Appended 2-Aminophenol Ligand: Redox-Driven Spin State Switchover. Inorg Chem 2022; 61:5292-5308. [PMID: 35312298 DOI: 10.1021/acs.inorgchem.1c03992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A green complex [Fe(L3)] (1), supported by the deprotonated form of a hexadentate noninnocent redox-active thioether-appended 2-aminophenolate ligand (H4L3 = N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)-2,2'-diamino(diphenyldithio)ethane), has been synthesized and structurally characterized at 100(2) K and 298(2) K. In CH2Cl2, 1 displays two oxidative and a reductive one-electron redox processes at E1/2 values of -0.52 and 0.20 V, and -0.85 V versus the Fc+/Fc redox couple, respectively. The one-electron oxidized 1+ and one-electron reduced 1- forms, isolated as a blackish-blue solid 1(PF6)·CH2Cl2 (2) and a gray solid [Co(η5-C5H5)2]1·DMF (3), have been structurally characterized at 100(2) K. Structural parameters at 100 K of the ligand backbone and metrical oxidation state values unambiguously establish the electronic states as [FeIII{(LAPO,N)2-}{(LISQO,N)•-}{(LS,S)0}] (1) (two tridentate halves are electronically asymmetric-ligand mixed-valency), [FeIII{(LISQO,N)•-}{(LISQO,N)•-}{(LS,S)0}]+ (1+), and [FeIII{(LAPO,N)2-}{(LAPO,N)2-}{(LS,S)0}]- (1-) [dianionic 2-amidophenolate(2-) (LAPO,N)2- and monoanionic 2-iminobenzosemiquinonate(1-) π-radical (Srad = 1/2) (LISQ)•- redox level]. Mössbauer spectral data of 1 at 295, 200, and 80 K reveal that it has a major low-spin (ls)-Fe(III) and a minor ls-Fe(II) component (redox isomers), and at 7 K, the major component exists exclusively. Thus, in 1, the occurrence of a thermally driven valence-tautomeric (VT) equilibrium (asymmetric) [FeIII{(LAPO,N)2-}{(LISQO,N)•-}{(LS,S)0}] ⇌ (symmetric) [FeII{(LISQO,N)•-}{(LISQO,N)•-}{(LS,S)0}] (80-295 K) is implicated. Mössbauer spectral parameters unequivocally establish that 1+ is a ls-Fe(III) complex. In contrast, the monoanion 1- contains a high-spin (hs)-Fe(III) center (SFe = 5/2), as is deduced from its Mössbauer and EPR spectra. Complexes 1-3 possess total spin ground states St = 0, 1/2, and 5/2, respectively, based on 1H NMR and EPR spectra, the variable-temperature (2-300 K) magnetic behavior of 2, and the μeff value of 3 at 300 K. Broken-symmetry density functional theory (DFT) calculations at the B3LYP-level of theory reveal that the unpaired electron in 1+/2 is due to the (LISQ)•- redox level [ls-Fe(III) (SFe = 1/2) is strongly antiferromagnetically coupled to one of the (LISQ)•- radicals (Srad = 1/2)], and 1-/3 is a hs-Fe(III) complex, supported by (L3)4- with two-halves in the (LAP)2- redox level. Complex 1 can have either a symmetric or asymmetric electronic state. As per DFT calculation, the former state is stabilized by -3.9 kcal/mol over the latter (DFT usually stabilizes electronically symmetric structure). Time-dependent (TD)-DFT calculations shed light on the origin of observed UV-vis-NIR spectral absorptions for 1-3 and corroborate the results of spectroelectrochemical experiments (300-1100 nm) on 1 (CH2Cl2; 298 K). Variable-temperature (218-298 K; CH2Cl2) absorption spectral (400-1000 nm) studies on 1 justify the presence of VT equilibrium in the solution-state.
Collapse
Affiliation(s)
- Akram Ali
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Saumitra Bhowmik
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Suman K Barman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Narottam Mukhopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | | | - Francesc Lloret
- Departament de Quımíca, Inorgànica/Instituto de Ciencia Molecular (ICMOL), Universitat de Valeńcia, Polígono de la Coma, s/n, Paterna, València 46980, Spain
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | | |
Collapse
|
5
|
Erickson AN, Gianino J, Markovitz SJ, Brown SN. Amphiphilicity in Oxygen Atom Transfer Reactions of Oxobis(iminoxolene)osmium Complexes. Inorg Chem 2021; 60:4004-4014. [PMID: 33657323 DOI: 10.1021/acs.inorgchem.1c00068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oxobis(iminoxolene)osmium(VI) compounds (Rap)2OsO (Rap = 2-(4-RC6H4N)-4,6-tBu2C6H2O) are readily deoxygenated by phosphines and phosphites to give five-coordinate (Rap)2Os(PR'3) or six-coordinate (Rap)2Os(PR'3)2. Structural data indicate that this net two-electron reduction is accompanied by apparent oxidation of the iminoxolene ligands due to their greater ability to engage in π donation to the reduced deoxy form of the osmium complex. In (Rap)2Os(PR'3)2, the HOMO is a ligand-based combination of the iminoxolene redox-active orbitals, while the LUMO is a highly covalent metal-iminoxolene π* orbital. In the trans isomer, the HOMO is required to be ligand-localized by symmetry, while in the cis isomer, the ligands adopt a conformation that minimizes metal-ligand π* interactions in the HOMO. Kinetic studies indicate that the deoxygenations involve the rate-determining attack of the phosphorus(III) reagent on the five-coordinate oxo complexes. Varying the substituents of the aryl groups on the iminoxolene ligands or on the triarylphosphines has little effect on the rate of oxygen atom transfer, with the best correlation shown between oxygen atom transfer rates and the HOMO-LUMO gap of the oxo complexes. This suggests that the osmium oxo group shows a balance between electrophilic and nucleophilic character in its oxygen atom transfer reactions with phosphorus(III) reagents.
Collapse
Affiliation(s)
- Alexander N Erickson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - Jacqueline Gianino
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - Sean J Markovitz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - Seth N Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| |
Collapse
|
6
|
Filippou V, Blickle S, Bubrin M, Kaim W. Intramolecular Charge Transfer in Ruthenium Complexes [Ru(acac)
2
(ciq)] with Ambidentate Camphoriminoquinone (ciq) Ligands. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Vasileios Filippou
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 D-70550 Stuttgart Germany
| | - Svenja Blickle
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 D-70550 Stuttgart Germany
| | - Martina Bubrin
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 D-70550 Stuttgart Germany
| | - Wolfgang Kaim
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 D-70550 Stuttgart Germany
| |
Collapse
|
7
|
Saha A, Rajput A, Gupta P, Mukherjee R. Probing the electronic structure of [Ru(L 1) 2] Z ( z = 0, 1+ and 2+) (H 2L 1: a tridentate 2-aminophenol derivative) complexes in three ligand redox levels. Dalton Trans 2020; 49:15355-15375. [PMID: 33135029 DOI: 10.1039/d0dt03074k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aerobic reaction between [RuII(DMSO)4Cl2], a redox-active 2-aminophenol-based ligand (H2L1: 2-[2-(benzylthio)phenylamino]-4,6-di-tert-butylphenol) and Et3N in MeOH under refluxing conditions afforded a purple complex [Ru(L1)2] (S = 0). Structural analysis reveals that the tridentate ligand coordinates in a mer conformation providing a distorted octahedral RuN2O2S2 coordination. Cyclic voltammetry on 1 in CH2Cl2 reveals the accessability of the monocation, dication and monoanion forms. Reddish purple monocation [Ru(L1)2](PF6)·CH2Cl2 ([1OX1](PF6)·CH2Cl2; S = 1/2) and green dication [Ru(L1)2](BF4)2·H2O ([1OX2](BF4)2·H2O; S = 0) have been isolated through the chemical oxidation of 1 in CH2Cl2 by [FeIII(η5-C5H5)2](PF6) and AgBF4, respectively. A structural analysis of the single crystals of the monocation and the dication with the compositions [1OX1](PF6)·CH2Cl2·H2O (2) and [1OX2](BF4)2·1.7H2O (3), respectively, has been done. Metrical (metal-ligand and ligand backbone) parameters, values of metrical oxidation states of coordinated ligands, 1H NMR spectra of 1 and [1OX2](BF4)2·H2O, EPR spectra of [1OX1](PF6)·CH2Cl2, X-ray photoelectron and UV-VIS-NIR spectra of 1-3, spin population analysis from broken-symmetry (BS) density functional theory (DFT) calculations and quasi-restricted orbital (QRO) analysis have allowed us to assign the electronic structure of the complexes. The complexes exhibit highly covalent metal-ligand interactions. The electronic states of 1, [1OX1]1+ and [1OX2]2+ are best described as [RuII{(LISQ)˙-}2] ↔ [RuIII{(LAP)2-}{(LISQ)˙-}] (S = 0), [RuIII{(LISQ)˙-}2]1+ (S = 1/2) and [RuII{(LIBQ)0}2]2+ ↔ [RuIII{(LISQ)˙-}{(LIBQ)0}]2+ (S = 0), respectively. Notably, all redox processes are ligand-centred. Absorption spectral properties have been rationalized based on time-dependent (TD)-DFT calculations. For 1, the appearance of an IVCT band at 1100 nm supports its Class II-III (borderline) ligand-based mixed-valence character.
Collapse
Affiliation(s)
- Anannya Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India
| | - Amit Rajput
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India. and Department of Chemistry, School of Basic and Applied Sciences, G. D. Goenka University, Sohna Road, Gurugram 122 103, Haryana, India
| | - Puneet Gupta
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | | |
Collapse
|
8
|
Mukherjee R. Assigning Ligand Redox Levels in Complexes of 2-Aminophenolates: Structural Signatures. Inorg Chem 2020; 59:12961-12977. [PMID: 32881491 DOI: 10.1021/acs.inorgchem.0c00240] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The purpose of this Viewpoint is to provide a broad-ranging update of advances in the coordination chemistry of redox-active (noninnocent) 2-aminophenolates, with emphasis on two ligand backbone structural parameters, the average of C-O and C-N (C-O/N) bond distances and Δa values, signifying the degree of bond-length alternation in the six-membered ring, in order to identify the redox level of the coordinated ligands. In the absence of magnetic, spectroscopic, and redox results, it has been established that it is possible to assign the electronic ground state of a coordination complex of 2-aminophenolates with consideration of charge, metal-ligand bond distances, and two very promising ligand backbone structural parameters. From a closer look at the sensitive ligand backbone metrical parameters of a diversified group of about 120 transition-metal complexes, a few very useful generalizations have been made.
Collapse
|
9
|
Nickel(II) derivatives based on o-iminobenzoquinone-type ligands: Structural modifications, magnetism and electrochemical peculiarities. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Valence tautomerism and delocalization in transition metal complexes of o-amidophenolates and other redox-active ligands. Some recent results. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213240] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Gianino J, Brown SN. Highly covalent metal-ligand π bonding in chelated bis- and tris(iminoxolene) complexes of osmium and ruthenium. Dalton Trans 2020; 49:7015-7027. [PMID: 32367103 DOI: 10.1039/d0dt01287d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The bis(aminophenol) 2,2'-biphenylbis(3,5-di-tert-butyl-2-hydroxyphenylamine) (ClipH4) forms trans-(Clip)Os(py)2 upon aerobic reaction of the ligand with {(p-cymene)OsCl2}2 in the presence of pyridine and triethylamine. A more oxidized species, cis-β-(Clip)Os(OCH2CH2O), is formed from reaction of the ligand with the osmium(vi) complex OsO(OCH2CH2O)2, and reacts with Me3SiCl to give the chloro complex cis-β-(Clip)OsCl2. Octahedral osmium and ruthenium tris-iminoxolene complexes are formed from the chelating ligand tris(2-(3',5'-di-tert-butyl-2'-hydroxyphenyl)amino-4-methylphenyl)amine (MeClampH6) on aerobic reaction with divalent metal precursors. The complexes' structural and electronic features are well described using a simple bonding model that emphasizes the covalency of the π bonding between the metal and iminoxolene ligands rather than attempting to dissect the parts into discrete oxidation states. Emphasizing the continuity of bonding between disparate complexes, the structural data from a variety of Os and Ru complexes show good correlations to π bond order, and the response of the intraligand bond distances to the bond order can be analyzed to illuminate the polarity of the bonding between metal and the redox-active orbital on the iminoxolenes. The osmium compounds'π bonding orbitals are about 40% metal-centered and 60% ligand-centered, with the ruthenium compounds' orbitals about 65% metal-centered and 35% ligand-centered.
Collapse
Affiliation(s)
- Jacqueline Gianino
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556-5670, USA.
| | | |
Collapse
|
12
|
Saeedi R, Safaei E, Lee YI, Lužnik J. Oxidation of sulfides including DBT using a new vanadyl complex of a non-innocent o
-aminophenol benzoxazole based ligand. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Roonak Saeedi
- Institute for Advanced Studies in Basic Sciences (IASBS); 45137-66731 Zanjan Iran
| | - Elham Safaei
- Department of Chemistry, College of Sciences; Shiraz University; Shiraz 71454 Iran
| | - Yong-Ill Lee
- Department of Chemistry; Changwon National University; Changwon 641-773 South Korea
| | - Janez Lužnik
- J. Stefan Institute and University of Ljubljana, Faculty of Mathematics and Physics; Jamova 39, SI-1000 Ljubljana Slovenia SI-1000 Ljubljana Slovenia
| |
Collapse
|
13
|
Safaei E, Balaghi SE, Chiang L, Clarke RM, Martelino D, Webb MI, Wong EWY, Savard D, Walsby CJ, Storr T. Stabilization of different redox levels of a tridentate benzoxazole amidophenoxide ligand when bound to Co(iii) or V(v). Dalton Trans 2019; 48:13326-13336. [DOI: 10.1039/c9dt02865j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The electronic structure of Co and V complexes of a tridentate benzoxazole-containing aminophenol ligand NNOH2 were characterized by both experimental and theoretical methods.
Collapse
Affiliation(s)
- Elham Safaei
- Department of Chemistry
- College of Science
- Shiraz University
- Shiraz
- Iran
| | | | - Linus Chiang
- Department of Chemistry
- Simon Fraser University
- 8888 University Drive
- Burnaby
- Canada
| | - Ryan M. Clarke
- Department of Chemistry
- Simon Fraser University
- 8888 University Drive
- Burnaby
- Canada
| | - Diego Martelino
- Department of Chemistry
- Simon Fraser University
- 8888 University Drive
- Burnaby
- Canada
| | - Michael I. Webb
- Department of Chemistry
- Simon Fraser University
- 8888 University Drive
- Burnaby
- Canada
| | - Edwin W. Y. Wong
- Department of Chemistry
- Simon Fraser University
- 8888 University Drive
- Burnaby
- Canada
| | - Didier Savard
- Department of Chemistry
- Simon Fraser University
- 8888 University Drive
- Burnaby
- Canada
| | - Charles J. Walsby
- Department of Chemistry
- Simon Fraser University
- 8888 University Drive
- Burnaby
- Canada
| | - Tim Storr
- Department of Chemistry
- Simon Fraser University
- 8888 University Drive
- Burnaby
- Canada
| |
Collapse
|
14
|
Chegerev MG, Piskunov AV, Starikova AA, Kubrin SP, Fukin GK, Cherkasov VK, Abakumov GA. Redox Isomerism in Main‐Group Chemistry: Tin Complex with
o
‐Iminoquinone Ligands. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701361] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Maxim G. Chegerev
- G. A. Razuvaev Institute of Organometallic Chemistry Tropinina str. 49 603950 Nizhny Novgorod Russia
| | - Alexandr V. Piskunov
- G. A. Razuvaev Institute of Organometallic Chemistry Tropinina str. 49 603950 Nizhny Novgorod Russia
| | - Alyona A. Starikova
- Institute of Physical and Organic Chemistry at Southern Federal University Stachka Avenue 194/ 2 344090 Rostov‐on‐Don Russia
| | - Stanislav P. Kubrin
- Research Institute of Physics Southern Federal University Stachka Avenue 194 344090 Rostov‐on‐Don Russia
| | - Georgy K. Fukin
- G. A. Razuvaev Institute of Organometallic Chemistry Tropinina str. 49 603950 Nizhny Novgorod Russia
| | - Vladimir K. Cherkasov
- G. A. Razuvaev Institute of Organometallic Chemistry Tropinina str. 49 603950 Nizhny Novgorod Russia
| | - Gleb A. Abakumov
- G. A. Razuvaev Institute of Organometallic Chemistry Tropinina str. 49 603950 Nizhny Novgorod Russia
| |
Collapse
|
15
|
Interacting metal and ligand based open shell systems: Challenges for experiment and theory. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Copper(II) complexes bearing o-iminosemiquinonate ligands with augmented aromatic substituents. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.08.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Clarke RM, Hazin K, Thompson JR, Savard D, Prosser KE, Storr T. Electronic Structure Description of a Doubly Oxidized Bimetallic Cobalt Complex with Proradical Ligands. Inorg Chem 2015; 55:762-74. [DOI: 10.1021/acs.inorgchem.5b02231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ryan M. Clarke
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Khatera Hazin
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - John R. Thompson
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Didier Savard
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Kathleen E. Prosser
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Tim Storr
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
18
|
Chiang L, Herasymchuk K, Thomas F, Storr T. Influence of Electron-Withdrawing Substituents on the Electronic Structure of Oxidized Ni and Cu Salen Complexes. Inorg Chem 2015; 54:5970-80. [DOI: 10.1021/acs.inorgchem.5b00783] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Linus Chiang
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Khrystyna Herasymchuk
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Fabrice Thomas
- Département de Chimie Moléculaire,
Chimie Inorganique Redox (CIRE), UMR-5250, Université Grenoble Alpes, BP 53, 38041 Grenoble
Cedex 9, France
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
19
|
Akl J, Sasaki I, Lacroix PG, Malfant I, Mallet-Ladeira S, Vicendo P, Farfán N, Santillan R. Comparative photo-release of nitric oxide from isomers of substituted terpyridinenitrosylruthenium(II) complexes: experimental and computational investigations. Dalton Trans 2015; 43:12721-33. [PMID: 25011547 DOI: 10.1039/c4dt00974f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The 4'-(2-fluorenyl)-2,2':6',2''-terpyridine (FT) ligand and its cis(Cl,Cl)- and trans(Cl,Cl)-[Ru(II)(FT)Cl2(NO)](PF6) complexes have been synthesized. Both isomers were separated by HPLC and fully characterized by (1)H and (13)C NMR. The X-ray diffraction crystal structures were solved for FT (Pna21 space group, a = 34.960(4), b = 5.9306(7), c = 9.5911(10) Å), and trans(Cl,Cl)-[Ru(II)(FT)Cl2(NO)](PF6)·MeOH (P1[combining macron] space group, a = 10.3340(5), b = 13.0961(6), c = 13.2279(6) Å, α = 72.680(2), β = 70.488(2), γ = 67.090(2)°). Photo-release of NO˙ radicals occurs under irradiation at 405 nm, with a quantum yield of 0.31 and 0.10 for cis(Cl,Cl)-[Ru(II)(FT)Cl2(NO)](PF6) and trans(Cl,Cl)-[Ru(II)(FT)Cl2(NO)](PF6), respectively. This significant difference is likely due to the trans effect of Cl(-), which favors the photo-release. UV-visible spectroscopy and cyclic voltammetry indicate the formation of ruthenium(iii) species as photoproducts. A density functional theory (DFT) analysis provides a rationale for the understanding of the photo-physical properties, and allows relating the weakening of the Ru-NO bond, and finally the photo-dissociation, to HOMO → LUMO excitations.
Collapse
Affiliation(s)
- Joëlle Akl
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Bubrin M, Schweinfurth D, Ehret F, Záliš S, Kvapilová H, Fiedler J, Zeng Q, Hartl F, Kaim W. Structure and Spectroelectrochemical Response of Arene–Ruthenium and Arene–Osmium Complexes with Potentially Hemilabile Noninnocent Ligands. Organometallics 2014. [DOI: 10.1021/om5002815] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martina Bubrin
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany
| | - David Schweinfurth
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, D- 14195 Berlin, Germany
| | - Fabian Ehret
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany
| | - Stanislav Záliš
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-18223 Prague, Czech Republic
| | - Hana Kvapilová
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-18223 Prague, Czech Republic
| | - Jan Fiedler
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-18223 Prague, Czech Republic
| | - Qiang Zeng
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - František Hartl
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Wolfgang Kaim
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany
| |
Collapse
|
21
|
Cipressi J, Brown SN. Octahedral to trigonal prismatic distortion driven by subjacent orbital π antibonding interactions and modulated by ligand redox noninnocence. Chem Commun (Camb) 2014; 50:7956-9. [DOI: 10.1039/c4cc03404j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ruthenium and osmium bis(amidodiphenoxides) distort towards trigonal prismatic geometries to minimize aryloxide-to-metal π* interactions, limited by increasing degree of oxidation of the redox-active ligand.
Collapse
Affiliation(s)
- Jacqueline Cipressi
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame, USA
| | - Seth N. Brown
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame, USA
| |
Collapse
|
22
|
Bittner MM, Kraus D, Lindeman SV, Popescu CV, Fiedler AT. Synthetic, spectroscopic, and DFT studies of iron complexes with iminobenzo(semi)quinone ligands: implications for o-aminophenol dioxygenases. Chemistry 2013; 19:9686-98. [PMID: 23744733 PMCID: PMC3965334 DOI: 10.1002/chem.201300520] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/17/2013] [Indexed: 11/10/2022]
Abstract
The oxidative C-C bond cleavage of o-aminophenols by nonheme Fe dioxygenases is a critical step in both human metabolism (the kynurenine pathway) and the microbial degradation of nitroaromatic pollutants. The catalytic cycle of o-aminophenol dioxygenases (APDOs) has been proposed to involve formation of an Fe(II)/O2/iminobenzosemiquinone complex, although the presence of a substrate radical has been called into question by studies of related ring-cleaving dioxygenases. Recently, we reported the first synthesis of an iron(II) complex coordinated to an iminobenzosemiquinone (ISQ) ligand, namely, [Fe((Ph2)Tp)((tBu)ISQ)] (2a; where (Ph2)Tp=hydrotris(3,5-diphenylpyrazol-1-yl)borate and (tBu)ISQ is the radical anion derived from 2-amino-4,6-di-tert-butylphenol). In the current manuscript, density functional theory (DFT) calculations and a wide variety of spectroscopic methods (electronic absorption, Mössbauer, magnetic circular dichroism, and resonance Raman) were employed to obtain detailed electronic-structure descriptions of 2a and its one-electron oxidized derivative [3a](+). In addition, we describe the synthesis and characterization of a parallel series of complexes featuring the neutral supporting ligand tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine ((Ph2)TIP). The isomer shifts of about 0.97 mm s(-1) obtained through Mössbauer experiments confirm that 2a (and its (Ph2)TIP-based analogue [2b](+)) contain Fe(II) centers, and the presence of an ISQ radical was verified by analysis of the absorption spectra in light of time-dependent DFT calculations. The collective spectroscopic data indicate that one-electron oxidation of the Fe(II)-ISQ complexes yields complexes ([3a](+) and [3b](2+)) with electronic configurations between the Fe(III)-ISQ and Fe(II)-IBQ limits (IBQ=iminobenzoquinone), highlighting the ability of o-amidophenolates to access multiple oxidation states. The implications of these results for the mechanism of APDOs and other ring-cleaving dioxygenases are discussed.
Collapse
Affiliation(s)
- Michael M. Bittner
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - David Kraus
- Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Sergey V. Lindeman
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Codrina V. Popescu
- Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Adam T. Fiedler
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
23
|
Balaghi SE, Safaei E, Chiang L, Wong EWY, Savard D, Clarke RM, Storr T. Synthesis, characterization and catalytic activity of copper(ii) complexes containing a redox-active benzoxazole iminosemiquinone ligand. Dalton Trans 2013; 42:6829-39. [DOI: 10.1039/c3dt00004d] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|