1
|
Liu Y, Hu J, Yu X, Xu X, Gao Y, Li H, Liang F. Preparation of Janus-type catalysts and their catalytic performance at emulsion interface. J Colloid Interface Sci 2017; 490:357-364. [DOI: 10.1016/j.jcis.2016.11.053] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
|
2
|
Gawande MB, Goswami A, Asefa T, Guo H, Biradar AV, Peng DL, Zboril R, Varma RS. Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem Soc Rev 2016; 44:7540-90. [PMID: 26288197 DOI: 10.1039/c5cs00343a] [Citation(s) in RCA: 468] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Core-shell nanoparticles (CSNs) are a class of nanostructured materials that have recently received increased attention owing to their interesting properties and broad range of applications in catalysis, biology, materials chemistry and sensors. By rationally tuning the cores as well as the shells of such materials, a range of core-shell nanoparticles can be produced with tailorable properties that can play important roles in various catalytic processes and offer sustainable solutions to current energy problems. Various synthetic methods for preparing different classes of CSNs, including the Stöber method, solvothermal method, one-pot synthetic method involving surfactants, etc., are briefly mentioned here. The roles of various classes of CSNs are exemplified for both catalytic and electrocatalytic applications, including oxidation, reduction, coupling reactions, etc.
Collapse
Affiliation(s)
- Manoj B Gawande
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry, Palacky University, Šlechtitelů 11, 783 71, Olomouc, Czech Republic.
| | - Anandarup Goswami
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry, Palacky University, Šlechtitelů 11, 783 71, Olomouc, Czech Republic. and Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Tewodros Asefa
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA and Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, USA
| | - Huizhang Guo
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Ankush V Biradar
- Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Dong-Liang Peng
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry, Palacky University, Šlechtitelů 11, 783 71, Olomouc, Czech Republic.
| | - Rajender S Varma
- Sustainable Technology Division, National Risk Management Research Laboratory, US Environmental Protection Agency, 26 West Martin Luther King Drive, MS 443, Cincinnati, Ohio 45268, USA.
| |
Collapse
|
5
|
Kirillova A, Schliebe C, Stoychev G, Jakob A, Lang H, Synytska A. Hybrid Hairy Janus Particles Decorated with Metallic Nanoparticles for Catalytic Applications. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21218-21225. [PMID: 26357969 DOI: 10.1021/acsami.5b05224] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report for the first time on the design of an advanced hairy hybrid Janus-type catalyst, which is comprised of an inorganic silica core covered with two distinct polymeric shells (hydrophilic and hydrophobic) on its opposite sides, while the catalytic species (in our case silver or gold nanoparticles) are immobilized directly into the hydrophilic stimuli-responsive polymer shell. The primary 200 nm large Janus particles with poly(acrylic acid) serving as the hydrophilic and polystyrene as the hydrophobic polymer were synthesized through a Pickering emulsion and a combination of "grafting from"/"grafting to" approaches. The incorporation of silver and gold nanoparticles within the hydrophilic polymer shell was achieved by infiltrating the respective metal ions into the polymer matrix, and nanoparticles were formed upon the addition of a reducing agent (triethylamine). Plasmon absorptions typical for silver and gold nanostructures were observed on the functionalized Janus particles using UV-vis spectroscopy. The respective systems were investigated by TEM and cryo-TEM revealing that the incorporated nanoparticles are selectively localized on the poly(acrylic acid) side of the Janus particles. The efficiency of the catalyst as well as the accessibility of the incorporated nanoparticles was tested on the reduction of Methylene Blue, Eosin Y, and 4-nitrophenol as convenient benchmark systems. Ultimately, the hairy Janus particles with immobilized Ag or Au nanoparticles efficiently catalyzed the respective reactions by applying extremely low amounts of catalyst. Finally, we demonstrated several advantages of the use of JPs with immobilized metallic nanoparticles, which are (i) JPs stabilize the emulsions, (ii) the emulsion can be destabilized by utilizing responsive properties of the JPs, and (iii) JPs can easily be recovered after reaction and reused again.
Collapse
Affiliation(s)
- Alina Kirillova
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6, 01069 Dresden, Germany
- Technische Universität Dresden , Physical Chemistry of Polymer Materials, 01062 Dresden, Germany
| | - Christian Schliebe
- Technische Universität Chemnitz , Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, 09107 Chemnitz, Germany
| | - Georgi Stoychev
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6, 01069 Dresden, Germany
- Technische Universität Dresden , Physical Chemistry of Polymer Materials, 01062 Dresden, Germany
| | - Alexander Jakob
- Technische Universität Chemnitz , Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, 09107 Chemnitz, Germany
| | - Heinrich Lang
- Technische Universität Chemnitz , Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, 09107 Chemnitz, Germany
| | - Alla Synytska
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6, 01069 Dresden, Germany
- Technische Universität Dresden , Physical Chemistry of Polymer Materials, 01062 Dresden, Germany
| |
Collapse
|
6
|
Zhang X, Niu Y, Yang Y, Li Y, Zhao J. Preparation and magnetic properties of γ-Fe2O3@SiO2core shell ellipsoids with different aspect ratios. NEW J CHEM 2014. [DOI: 10.1039/c4nj00389f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|