1
|
Wicker SA, Hutchison P, Musicante RG, Kiker MT, Suffern NC, Graham DK, Rhodes LM, Binu AP, Jean-Francois SA, Graves AS, Brennessel WW, Eckenhoff WT. Hydrogen Production Using a Nickel Catalyst Combining Redox Activity and Pendent Base Effects. Inorg Chem 2024; 63:451-461. [PMID: 38113512 DOI: 10.1021/acs.inorgchem.3c03308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
With the mounting need for clean and renewable energy, catalysts for hydrogen production based on earth abundant elements are of great interest. Herein, we describe the synthesis, characterization, and catalytic activity of two nickel complexes based on the pyridinediimine ligand that possess basic nitrogen moieties of pyridine and imidazole that could potentially serve as pendent bases to enhance catalysis. Although these ligands have previously been reported to be complexed to some metal ions, they have not been applied to nickel. The nickel complex with the pendent pyridines was found to be the most active of the two, catalyzing proton reduction electrochemically with an overpotential of 490 mV. The appearance of a wave that preceded the Ni(I/0) redox couple in the presence of protons suggests that protonation of a dissociated pyridine was likely. Further evidence of this was provided with density functional theory calculations, and a mechanism of hydrogen production is proposed. Furthermore, in a light-driven system containing Ru(bpy)32+ and ascorbic acid, TON of 1400 were obtained.
Collapse
Affiliation(s)
- Scott A Wicker
- Department of Chemistry, Rhodes College, 2000 N. Parkway, Memphis, Tennessee 38112, United States
| | - Phillips Hutchison
- Department of Chemistry, Rhodes College, 2000 N. Parkway, Memphis, Tennessee 38112, United States
| | - Robert G Musicante
- Department of Chemistry, Rhodes College, 2000 N. Parkway, Memphis, Tennessee 38112, United States
| | - Meghan T Kiker
- Department of Chemistry, Rhodes College, 2000 N. Parkway, Memphis, Tennessee 38112, United States
| | - Nicholas C Suffern
- Department of Chemistry, Rhodes College, 2000 N. Parkway, Memphis, Tennessee 38112, United States
| | - Daniel K Graham
- Department of Chemistry, Rhodes College, 2000 N. Parkway, Memphis, Tennessee 38112, United States
| | - Liam M Rhodes
- Department of Chemistry, Rhodes College, 2000 N. Parkway, Memphis, Tennessee 38112, United States
| | - Aby P Binu
- Department of Chemistry, Rhodes College, 2000 N. Parkway, Memphis, Tennessee 38112, United States
| | - Stephan A Jean-Francois
- Department of Chemistry, Rhodes College, 2000 N. Parkway, Memphis, Tennessee 38112, United States
| | - Alex S Graves
- Department of Chemistry, Rhodes College, 2000 N. Parkway, Memphis, Tennessee 38112, United States
| | - William W Brennessel
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - William T Eckenhoff
- Department of Chemistry, Rhodes College, 2000 N. Parkway, Memphis, Tennessee 38112, United States
| |
Collapse
|
2
|
Fiore AM, Petrelli V, Fliedel C, Manoury E, Mastrorilli P, Poli R. Acetate ion addition to and exchange in (1,5-cyclooctadiene)rhodium(I) acetate: relevance for the coagulation of carboxylic acid-functionalized shells of core-crosslinked micelle latexes. Dalton Trans 2023; 52:12534-12542. [PMID: 37608708 DOI: 10.1039/d3dt02260a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The solution behavior of complex [Rh(COD)(μ-OAc)]2 in the absence and presence of PPN+OAc- in dichloromethane has been investigated in detail by multinuclear NMR spectroscopy. Without additional acetate ions, the compound shows dynamic behavior at room temperature, consistent with an inversion of its C2v structure. Addition of PPN+OAc- reveals an equilibrated generation of [Rh(COD)(OAc)2]-. Rapid exchange is observed at room temperature between the neutral dimer and the anionic mononuclear complex, as well as between the anionic complex and free acetate. Lowering the temperature to 213 K freezes the exchange between the two Rh complexes, but fast exchange between the anionic Rh complex and free acetate maintains coalesced Me (1H and 13C) and COO (13C) NMR resonances. DFT calculations support the experimental data and lean in favour of a dissociative mechanism for the acetate exchange in [Rh(COD)(OAc)2]-. The acetate ligands in complex [Rh(COD)(μ-OAc)]2 are also exchanged in a biphasic (water/organic) system with the methacrylic acid (MAA) functions of hydrosoluble [MMA0.5-co-PEOMA0.5]30 copolymer chains (PEOMA = poly(ethylene oxide) methyl ether methacrylate), resulting in transfer of the Rh complex to the aqueous phase. Exchange with the MAA functions in the same polymer equally takes place for the chloride ligands of [Rh(COD)(μ-Cl)]2. The latter phenomenon rationalizes the coagulation of a core-crosslinked micelle (CCM) latex, where MMA functions are present on the hydrophilic CCM shell, when a dichloromethane solution of [Rh(COD)(μ-Cl)]2 is added.
Collapse
Affiliation(s)
- Ambra Maria Fiore
- Dipartimento di Chimica, Università degli studi di Bari "Aldo Moro", via Orabona, 4, 70125 Bari, Italy
- DICATECh, Politecnico di Bari, via Orabona, 4, 70125 Bari, Italy.
| | | | - Christophe Fliedel
- CNRS, LCC (Laboratoire de Chimie de Coordination), UPS, INPT, Université de Toulouse, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France.
| | - Eric Manoury
- CNRS, LCC (Laboratoire de Chimie de Coordination), UPS, INPT, Université de Toulouse, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France.
| | | | - Rinaldo Poli
- CNRS, LCC (Laboratoire de Chimie de Coordination), UPS, INPT, Université de Toulouse, 205 route de Narbonne, F-31077 Toulouse, Cedex 4, France.
- Institut Universitaire de France, 1, rue Descartes, 75231 Paris, France
| |
Collapse
|
3
|
Jiang B, Gil‐Sepulcre M, Garrido‐Barros P, Gimbert‐Suriñach C, Wang J, Garcia‐Anton J, Nolis P, Benet‐Buchholz J, Romero N, Sala X, Llobet A. Unravelling the Mechanistic Pathway of the Hydrogen Evolution Reaction Driven by a Cobalt Catalyst. Angew Chem Int Ed Engl 2022; 61:e202209075. [PMID: 35922381 PMCID: PMC9804897 DOI: 10.1002/anie.202209075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 01/09/2023]
Abstract
A cobalt complex bearing a κ-N3 P2 ligand is presented (1+ or CoI (L), where L is (1E,1'E)-1,1'-(pyridine-2,6-diyl)bis(N-(3-(diphenylphosphanyl)propyl)ethan-1-imine). Complex 1+ is stable under air at oxidation state CoI thanks to the π-acceptor character of the phosphine groups. Electrochemical behavior of 1+ reveals a two-electron CoI /CoIII oxidation process and an additional one-electron reduction, which leads to an enhancement in the current due to hydrogen evolution reaction (HER) at Eonset =-1.6 V vs Fc/Fc+ . In the presence of 1 equiv of bis(trifluoromethane)sulfonimide, 1+ forms the cobalt hydride derivative CoIII (L)-H (22+ ), which has been fully characterized. Further addition of 1 equiv of CoCp*2 (Cp* is pentamethylcyclopentadienyl) affords the reduced CoII (L)-H (2+ ) species, which rapidly forms hydrogen and regenerates the initial CoI (L) (1+ ). The spectroscopic characterization of catalytic intermediates together with DFT calculations support an unusual bimolecular homolytic mechanism in the catalytic HER with 1+ .
Collapse
Affiliation(s)
- Bing Jiang
- Departament de QuímicaUniversitat Autònoma de Barcelona Cerdanyola del Valles08193BarcelonaSpain
| | - Marcos Gil‐Sepulcre
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
| | - Pablo Garrido‐Barros
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
| | - Carolina Gimbert‐Suriñach
- Departament de QuímicaUniversitat Autònoma de Barcelona Cerdanyola del Valles08193BarcelonaSpain
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
| | - Jia‐Wei Wang
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
| | - Jordi Garcia‐Anton
- Departament de QuímicaUniversitat Autònoma de Barcelona Cerdanyola del Valles08193BarcelonaSpain
| | - Pau Nolis
- Servei de Ressonància Magnètica NuclearUniversitat Autònoma de Barcelona08193 BellaterraBarcelonaCataloniaSpain
| | - Jordi Benet‐Buchholz
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
| | - Nuria Romero
- Departament de QuímicaUniversitat Autònoma de Barcelona Cerdanyola del Valles08193BarcelonaSpain
- Laboratoire de Chimie de Coordination (LCC)—UPR 8241205 Route de Narbonne, BP4409931077Toulouse Cedex 4France
| | - Xavier Sala
- Departament de QuímicaUniversitat Autònoma de Barcelona Cerdanyola del Valles08193BarcelonaSpain
| | - Antoni Llobet
- Departament de QuímicaUniversitat Autònoma de Barcelona Cerdanyola del Valles08193BarcelonaSpain
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
| |
Collapse
|
4
|
Jiang B, Gil-Sepulcre M, Garrido-Barros P, Gimbert-Suriñach C, Wang JW, Garcia-Anton J, Nolis P, Benet-Buchholz J, Romero N, Sala X, Llobet A. Unravelling the Mechanistic Pathway of the Hydrogen Evolution Reaction Driven by a Cobalt Catalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bing Jiang
- Autonomous University of Barcelona: Universitat Autonoma de Barcelona Chemistry SPAIN
| | | | | | | | - Jia-Wei Wang
- ICIQ: Institut Catala d'Investigacio Quimica ICIQ SPAIN
| | - Jordi Garcia-Anton
- Autonomous University of Barcelona: Universitat Autonoma de Barcelona Chemistry SPAIN
| | - Pau Nolis
- Autonomous University of Barcelona: Universitat Autonoma de Barcelona Chemistry SPAIN
| | | | - Nuria Romero
- LCC: Laboratoire de Chimie de Coordination LCC SPAIN
| | - Xavier Sala
- Universitat Autonoma de Barcelona Chemistry Campus BellaterraFacultat de CiènciesEdifici C 08193 Cerdanyola del Vallès SPAIN
| | - Antoni Llobet
- ICIQ: Institut Catala d'Investigacio Quimica ICIQ SPAIN
| |
Collapse
|
5
|
Mena MR, Kim JH, So S, Ben-Daat H, Porter TM, Ghosh C, Sharma A, Flores M, Groy TL, Baik MH, Trovitch RJ. Comparing the Electronic Structure of Iron, Cobalt, and Nickel Compounds That Feature a Phosphine-Substituted Bis(imino)pyridine Chelate. Inorg Chem 2022; 61:6438-6450. [PMID: 35438990 DOI: 10.1021/acs.inorgchem.2c00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It was recently discovered that (Ph2PPrPDI)Mn (PDI = pyridine diimine) exists as a superposition of low-spin Mn(II) that is supported by a PDI dianion and intermediate-spin Mn(II) that is antiferromagnetically coupled to a triplet PDI dianion, a finding that encouraged the synthesis and electronic structure evaluation of late first row metal variants that feature the same chelate. The addition of Ph2PPrPDI to FeBr2 resulted in bromide dissociation and the formation of [(Ph2PPrPDI)FeBr][Br]. Reduction of this precursor using excess sodium amalgam afforded (Ph2PPrPDI)Fe, which possesses an Fe(II) center that is supported by a dianionic PDI ligand. Similarly, reduction of a premixed solution of Ph2PPrPDI and CoCl2 yielded the cobalt analog, (Ph2PPrPDI)Co. EPR spectroscopy and density functional theory calculations revealed that this compound features a high-spin Co(I) center that is antiferromagnetically coupled to a PDI radical anion. The addition of Ph2PPrPDI to Ni(COD)2 resulted in ligand displacement and the formation of (Ph2PPrPDI)Ni, which was found to possess a pendent phosphine group. Single-crystal X-ray diffraction, CASSCF calculations, and EPR spectroscopy indicate that (Ph2PPrPDI)Ni is best described as having a Ni(II)-PDI2- configuration. The electronic differences between these compounds are highlighted, and a computational analysis of Ph2PPrPDI denticity has revealed the thermodynamic penalties associated with phosphine dissociation from 5-coordinate (Ph2PPrPDI)Mn, (Ph2PPrPDI)Fe, and (Ph2PPrPDI)Co.
Collapse
Affiliation(s)
- Matthew R Mena
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Jun-Hyeong Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Sangho So
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hagit Ben-Daat
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Tyler M Porter
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Chandrani Ghosh
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Anuja Sharma
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Marco Flores
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Thomas L Groy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Ryan J Trovitch
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
6
|
Sharma A, So S, Kim JH, MacMillan SN, Baik MH, Trovitch RJ. An Aryl Diimine Cobalt(I) Catalyst for Carbonyl Hydrosilylation. Chem Commun (Camb) 2022; 58:10793-10796. [DOI: 10.1039/d2cc04089a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through the application of a redox-innocent aryl diimine chelate, the discovery and utilization of a cobalt catalyst, (Ph2PPrADI)Co, that exhibits carbonyl hydrosilylation turnover frequencies of up to 330 s–1 is...
Collapse
|
7
|
Sharma A, Trovitch RJ. Phosphorous-substituted redox-active ligands in base metal hydrosilylation catalysis. Dalton Trans 2021; 50:15973-15977. [PMID: 34679147 DOI: 10.1039/d1dt02879k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article highlights the utilization of phosphine-containing redox-active ligands for efficient hydrosilylation catalysis. Manganese, iron, cobalt, and nickel precatalysts featuring these chelates have been described and leading activities for carbonyl, carboxylate, and ester C-O bond hydrosilylation have been achieved. Mechanistic studies have provided insight into the importance of phosphine hemilability.
Collapse
Affiliation(s)
- Anuja Sharma
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, 85287, USA.
| | - Ryan J Trovitch
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, 85287, USA.
| |
Collapse
|
8
|
Römelt C, Weyhermüller T, Wieghardt K. Structural characteristics of redox-active pyridine-1,6-diimine complexes: Electronic structures and ligand oxidation levels. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.09.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Wang D, Ekanayake DM, Lindeman SV, Verani CN, Fiedler AT. Multielectron Redox Chemistry of Transition Metal Complexes Supported by a Non‐Innocent N
3
P
2
Ligand: Synthesis, Characterization, and Catalytic Properties. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Denan Wang
- Department of Chemistry Marquette University 53201 Milwaukee Wisconsin United States
| | - Danushka M. Ekanayake
- Department of Chemistry Wayne State University 5101 Cass Ave 48202 Detroit MI United States
| | - Sergey V. Lindeman
- Department of Chemistry Marquette University 53201 Milwaukee Wisconsin United States
| | - Cláudio N. Verani
- Department of Chemistry Wayne State University 5101 Cass Ave 48202 Detroit MI United States
| | - Adam T. Fiedler
- Department of Chemistry Marquette University 53201 Milwaukee Wisconsin United States
| |
Collapse
|
10
|
Mukhopadhyay TK, MacLean NL, Flores M, Groy TL, Trovitch RJ. Isolation of Mn(I) Compounds Featuring a Reduced Bis(imino)pyridine Chelate and Their Relevance to Electrocatalytic Hydrogen Production. Inorg Chem 2018; 57:6065-6075. [DOI: 10.1021/acs.inorgchem.8b00588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tufan K. Mukhopadhyay
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Nicholas L. MacLean
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Marco Flores
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Thomas L. Groy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Ryan J. Trovitch
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
11
|
Morrow TJ, Christman WE, Williams JZ, Arulsamy N, Goroncy A, Hulley EB. Ligand dynamics and protonation preferences of Rh and Ir complexes bearing an almost, but not quite, pendent base. Dalton Trans 2018; 47:2670-2682. [DOI: 10.1039/c7dt04259k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pendent nucleophiles can assist transition metals mediate bond rearrangements (e.g. as proton acceptors), but can also act as inhibitory hemilabile ligands. This dual nature has been studied in a series of rhodium and iridium complexes that exhibit disparate nucleophile binding ability in the ground state and in protonation reactions.
Collapse
Affiliation(s)
- T. J. Morrow
- Department of Chemistry
- University of Wyoming
- Laramie
- USA
| | | | | | - N. Arulsamy
- Department of Chemistry
- University of Wyoming
- Laramie
- USA
| | - A. Goroncy
- Department of Chemistry
- University of Wyoming
- Laramie
- USA
| | - E. B. Hulley
- Department of Chemistry
- University of Wyoming
- Laramie
- USA
| |
Collapse
|
12
|
Abstract
In recent years, interest in homogeneous manganese catalyst development has intensified because of the earth-abundant and nontoxic nature of this metal. Although compounds of Mn have largely been utilized for epoxidation reactions, recent efforts have revealed that Mn catalysts can mediate a broad range of reductive transformations. Low-valent Mn compounds have proven to be particularly effective for the hydrosilylation of carbonyl- and carboxylate-containing substrates, and this Account aims to highlight my research group's contributions to this field. In our initial 2014 communication, we reported that the bis(imino)pyridine-supported compound (Ph2PPrPDI)Mn mediates ketone hydrosilylation with exceptional activity under solvent-free conditions. Silanes including Ph2SiH2, (EtO)3SiH, (EtO)2MeSiH, and (EtO)Me2SiH were found to partially reduce cyclohexanone in the presence of (Ph2PPrPDI)Mn, while turnover frequencies of up to 1280 min-1 were observed using PhSiH3. This led us to evaluate the hydrosilylation of 11 additional ketones and allowed for the atom-efficient preparation of tertiary and quaternary silanes. At that time, it was also discovered that (Ph2PPrPDI)Mn catalyzes the dihydrosilylation of esters (by way of acyl C-O bond hydrosilylation) to yield a mixture of silyl ethers with modest activity. Earlier this year, the scope of these transformations was extended to aldehydes and formates, and the observed hydrosilylation activities are among the highest obtained for any transition-metal catalyst. The effectiveness of three related catalysts has also been evaluated: (Ph2PPrPDI)MnH, (PyEtPDEA)Mn, and [(Ph2PEtPDI)Mn]2. To our surprise, (Ph2PPrPDI)MnH was found to exhibit higher carboxylate dihydrosilylation activity than (Ph2PPrPDI)Mn, while (PyEtPDEA)Mn demonstrated remarkable carbonyl hydrosilylation activity considering that it lacks a redox-active supporting ligand. The evaluation of [(Ph2PEtPDI)Mn]2 revealed competitive aldehyde hydrosilylation and formate dihydrosilylation turnover frequencies; however, this catalyst is significantly inhibited by pyridine and alkene donor groups. In our efforts to fully understand how (Ph2PPrPDI)Mn operates, a thorough electronic structure evaluation was conducted, and the ground-state doublet calculated for this compound was found to exhibit nonclassical features consistent with a low-spin Mn(II) center supported by a singlet PDI dianion and an intermediate-spin Mn(II) configuration featuring antiferromagnetic coupling to PDI diradical dianion. A comprehensive mechanistic investigation of (Ph2PPrPDI)Mn- and (Ph2PPrPDI)MnH-mediated hydrosilylation has revealed two operable pathways, a modified Ojima pathway that is more active for carbonyl hydrosilylation and an insertion pathway that is more effective for carboxylate reduction. Although these efforts represent a small fraction of the recent advances made in Mn catalysis, this work has proven to be influential for the development of Mn-based reduction catalysts and is likely to inform future efforts to develop Mn catalysts that can be used to prepare silicones.
Collapse
Affiliation(s)
- Ryan J. Trovitch
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
13
|
Mukhopadhyay TK, Ghosh C, Flores M, Groy TL, Trovitch RJ. Hydrosilylation of Aldehydes and Formates Using a Dimeric Manganese Precatalyst. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00423] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tufan K. Mukhopadhyay
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Chandrani Ghosh
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Marco Flores
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Thomas L. Groy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Ryan J. Trovitch
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
14
|
Mukhopadhyay TK, Rock CL, Hong M, Ashley DC, Groy TL, Baik MH, Trovitch RJ. Mechanistic Investigation of Bis(imino)pyridine Manganese Catalyzed Carbonyl and Carboxylate Hydrosilylation. J Am Chem Soc 2017; 139:4901-4915. [DOI: 10.1021/jacs.7b00879] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Tufan K. Mukhopadhyay
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Christopher L. Rock
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Mannkyu Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Daniel C. Ashley
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Thomas L. Groy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Ryan J. Trovitch
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
15
|
Pal R, Cherry BR, Flores M, Groy TL, Trovitch RJ. Isolation of a bis(imino)pyridine molybdenum(i) iodide complex through controlled reduction and interconversion of its reaction products. Dalton Trans 2016; 45:10024-33. [PMID: 27095635 DOI: 10.1039/c6dt00301j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Analysis of previously reported [((Ph2PPr)PDI)MoI][I] by cyclic voltammetry revealed a reversible wave at -1.20 V vs. Fc(+/0), corresponding to the Mo(ii)/Mo(i) redox couple. Reduction of [((Ph2PPr)PDI)MoI][I] using stoichiometric K/naphthalene resulted in ligand deprotonation rather than reduction to yield a Mo(ii) monoiodide complex featuring a Mo-C bond to the α-position of one imine substituent, (κ(6)-P,N,N,N,C,P-(Ph2PPr)PDI)MoI. Successful isolation of the inner-sphere Mo(i) monoiodide complex, ((Ph2PPr)PDI)MoI, was achieved via reduction of [((Ph2PPr)PDI)MoI][I] with equimolar Na/naphthalene. This complex was found to have a near octahedral coordination geometry by single crystal X-ray diffraction and electron paramagnetic resonance (EPR) spectroscopy revealed an unpaired Mo-based electron which is highly delocalized onto the PDI chelate core. Attempts to prepare a Mo(i) monohydride complex upon adding NaEt3BH to ((Ph2PPr)PDI)MoI resulted in disproportionation to yield an equimolar quantity of (κ(6)-P,N,N,N,C,P-(Ph2PPr)PDI)MoH and newly identified ((Ph2PPr)PDI)MoH2. Independent preparation of ((Ph2PPr)PDI)MoH2 was achieved by adding 2 equiv. NaEt3BH to [((Ph2PPr)PDI)MoI][I] and a minimum hydride resonance T1 of 176 ms suggests that the Mo-bound H atoms are best described as classical hydrides. Interestingly, ((Ph2PPr)PDI)MoH2 can be converted to (κ(6)-P,N,N,N,C,P-(Ph2PPr)PDI)MoI upon iodomethane addition, while ((Ph2PPr)PDI)MoH2 is prepared from (κ(6)-P,N,N,N,C,P-(Ph2PPr)PDI)MoI in the presence of excess NaEt3BH. Similarly, (κ(6)-P,N,N,N,C,P-(Ph2PPr)PDI)MoI can be converted to (κ(6)-P,N,N,N,C,P-(Ph2PPr)PDI)MoH with 1 equiv. of NaEt3BH, while the opposite transformation occurs following iodomethane addition to (κ(6)-P,N,N,N,C,P-(Ph2PPr)PDI)MoH. Facile interconversion between [((Ph2PPr)PDI)MoI][I], (κ(6)-P,N,N,N,C,P-(Ph2PPr)PDI)MoI, (κ(6)-P,N,N,N,C,P-(Ph2PPr)PDI)MoH, and ((Ph2PPr)PDI)MoH2 is expected to guide future reactivity studies on this unique set of compounds.
Collapse
Affiliation(s)
- Raja Pal
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA.
| | - Brian R Cherry
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA.
| | - Marco Flores
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA.
| | - Thomas L Groy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA.
| | - Ryan J Trovitch
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA.
| |
Collapse
|
16
|
Pal R, Laureanti JA, Groy TL, Jones AK, Trovitch RJ. Hydrogen production from water using a bis(imino)pyridine molybdenum electrocatalyst. Chem Commun (Camb) 2016; 52:11555-8. [DOI: 10.1039/c6cc04946j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reduction of [(Ph2PPrPDI)MoO][PF6]2 affords an unusual Mo(ii) oxo compound that mediates the electrocatalytic reduction of water.
Collapse
Affiliation(s)
- Raja Pal
- School of Molecular Sciences
- Arizona State University
- Tempe
- USA
| | | | - Thomas L. Groy
- School of Molecular Sciences
- Arizona State University
- Tempe
- USA
| | - Anne K. Jones
- School of Molecular Sciences
- Arizona State University
- Tempe
- USA
| | | |
Collapse
|
17
|
Pal R, Groy TL, Trovitch RJ. Conversion of Carbon Dioxide to Methanol Using a C–H Activated Bis(imino)pyridine Molybdenum Hydroboration Catalyst. Inorg Chem 2015. [DOI: 10.1021/acs.inorgchem.5b01102] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raja Pal
- Department of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Thomas L. Groy
- Department of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Ryan J. Trovitch
- Department of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
18
|
Gilbert-Wilson R, Chu WY, Rauchfuss TB. Phosphine-iminopyridines as platforms for catalytic hydrofunctionalization of alkenes. Inorg Chem 2015; 54:5596-603. [PMID: 25978588 DOI: 10.1021/acs.inorgchem.5b00692] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of phosphine-diimine ligands were synthesized by the condensation of 2-(diphenylphosphino)aniline (PNH2) with a variety of formyl and ketopyridines. Condensation of PNH2 with acetyl- and benzoylpyridine yielded the Ph2P(C6H4)N═C(R)(C5H4N), respectively abbreviated PN(Me)py and PN(Ph)py. With ferrous halides, PN(Ph)py gave the complexes FeX2(PN(Ph)py) (X = Cl, Br). Condensation of pyridine carboxaldehyde and its 6-methyl derivatives with PNH2 was achieved using a ferrous template, affording low-spin complexes [Fe(PN(H)py(R))2](2+) (R = H, Me). Dicarbonyls Fe(PN(R)py)(CO)2 were produced by treating PN(Me)py with Fe(benzylideneacetone)(CO)3 and reduction of FeX2(PN(Ph)py) with NaBEt3H under a CO atmosphere. Cyclic voltammetric studies show that the [FeL3(CO)2](0/-) and [FeL3(CO)2](+/0) couples are similar for a range of tridentate ligands, but the PN(Ph)py system uniquely sustains two one-electron reductions. Treatment of Fe(PN(Ph)py)X2 with NaBEt3H gave active catalysts for the hydroboration of 1-octene with pinacolborane. Similarly, these catalysts proved active for the addition of diphenylsilane, but not HSiMe(OSiMe3)2, to 1-octene and vinylsilanes. Evidence is presented that catalysis occurs via iron hydride complexes of intact PN(Ph)py.
Collapse
Affiliation(s)
- Ryan Gilbert-Wilson
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wan-Yi Chu
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Mukhopadhyay TK, MacLean NL, Gan L, Ashley DC, Groy TL, Baik MH, Jones AK, Trovitch RJ. Carbon Dioxide Promoted H+ Reduction Using a Bis(imino)pyridine Manganese Electrocatalyst. Inorg Chem 2015; 54:4475-82. [DOI: 10.1021/acs.inorgchem.5b00315] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tufan K. Mukhopadhyay
- Department of Chemistry & Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Nicholas L. MacLean
- Department of Chemistry & Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Lu Gan
- Department of Chemistry & Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Daniel C. Ashley
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Thomas L. Groy
- Department of Chemistry & Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Mu-Hyun Baik
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Anne K. Jones
- Department of Chemistry & Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Ryan J. Trovitch
- Department of Chemistry & Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
20
|
Mukhopadhyay TK, Flores M, Feller RK, Scott BL, Taylor RD, Paz-Pasternak M, Henson NJ, Rein FN, Smythe NC, Trovitch RJ, Gordon JC. A New Spin on Cyclooctatetraene (COT) Redox Activity: Low-Spin Iron(I) Complexes That Exhibit Antiferromagnetic Coupling to a Singly Reduced η4-COT Ligand. Organometallics 2014. [DOI: 10.1021/om500909h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tufan K. Mukhopadhyay
- Department of Chemistry & Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Marco Flores
- Department of Chemistry & Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Russell K. Feller
- Materials
Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Brian L. Scott
- Materials
Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - R. Dean Taylor
- Materials
Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Moshe Paz-Pasternak
- School
of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Neil J. Henson
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Francisca N. Rein
- Chemistry
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nathan C. Smythe
- Chemistry
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ryan J. Trovitch
- Department of Chemistry & Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - John C. Gordon
- Chemistry
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
21
|
Pal R, Groy TL, Bowman AC, Trovitch RJ. Preparation and Hydrosilylation Activity of a Molybdenum Carbonyl Complex That Features a Pentadentate Bis(imino)pyridine Ligand. Inorg Chem 2014; 53:9357-65. [DOI: 10.1021/ic501465v] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Raja Pal
- Department of Chemistry & Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Thomas L. Groy
- Department of Chemistry & Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Amanda C. Bowman
- Department
of Chemistry, Transylvania University, Lexington, Kentucky 40508, United States
| | - Ryan J. Trovitch
- Department of Chemistry & Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
22
|
Mukhopadhyay TK, Flores M, Groy TL, Trovitch RJ. A Highly Active Manganese Precatalyst for the Hydrosilylation of Ketones and Esters. J Am Chem Soc 2014; 136:882-5. [DOI: 10.1021/ja4116346] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Tufan K. Mukhopadhyay
- Department of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Marco Flores
- Department of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Thomas L. Groy
- Department of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Ryan J. Trovitch
- Department of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
23
|
Porter TM, Hall GB, Groy TL, Trovitch RJ. Importance of co-donor field strength in the preparation of tetradentate α-diimine nickel hydrosilylation catalysts. Dalton Trans 2013; 42:14689-92. [DOI: 10.1039/c3dt52419a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|