1
|
Bai M, Wan H, Zhang Y, Chen S, Lu C, Liu X, Chen G, Zhang N, Ma R. Two-dimensional nanomaterials based on rare earth elements for biomedical applications. Chem Sci 2024; 15:d4sc02625j. [PMID: 39360014 PMCID: PMC11441461 DOI: 10.1039/d4sc02625j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024] Open
Abstract
As a kind of star materials, two-dimensional (2D) nanomaterials have attracted tremendous attention for their unique structures, excellent performance and wide applications. In recent years, layered rare earth-based or doped nanomaterials have become a new important member of the 2D nanomaterial family and have attracted significant interest, especially layered rare earth hydroxides (LREHs) and layered rare earth-doped perovskites with anion-exchangeability and exfoliative properties. In this review, we systematically summarize the synthesis, exfoliation, fabrication and biomedical applications of 2D rare earth nanomaterials. Upon exfoliation, the LREHs and layered rare earth-doped perovskites can be dimensionally reduced to ultrathin nanosheets which feature high anisotropy and flexibility. Subsequent fabrication, especially superlattice assembly, enables rare earth nanomaterials with diverse compositions and structures, which further optimizes or even creates new properties and thus expands the application fields. The latest progress in biomedical applications of the 2D rare earth-based or doped nanomaterials and composites is also reviewed in detail, especially drug delivery and magnetic resonance imaging (MRI). Moreover, at the end of this review, we provide an outlook on the opportunities and challenges of the 2D rare earth-based or doped nanomaterials. We believe this review will promote increasing interest in 2D rare earth materials and provide more insight into the artificial design of other nanomaterials based on rare earth elements for functional applications.
Collapse
Affiliation(s)
- Mingjun Bai
- School of Materials Science and Engineering, Chongqing University of Technology Chongqing 400054 P. R. China
| | - Hao Wan
- Zhongyuan Critical Metals Laboratory, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Ying Zhang
- Zhongyuan Critical Metals Laboratory, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Siqi Chen
- School of Materials Science and Engineering, Chongqing University of Technology Chongqing 400054 P. R. China
| | - Chunyin Lu
- School of Materials Science and Engineering, Chongqing University of Technology Chongqing 400054 P. R. China
| | - Xiaohe Liu
- Zhongyuan Critical Metals Laboratory, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Gen Chen
- School of Materials Science and Engineering, Central South University Changsha 410083 P. R. China
| | - Ning Zhang
- School of Materials Science and Engineering, Central South University Changsha 410083 P. R. China
| | - Renzhi Ma
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) Tsukuba Ibaraki 305-0044 Japan
| |
Collapse
|
2
|
Granadeiro CM, Julião D, Ribeiro SO, Cunha-Silva L, Balula SS. Recent advances in lanthanide-coordinated polyoxometalates: from structural overview to functional materials. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
3
|
Fernandes S, Flores D, Silva D, Santos-Vieira I, Mirante F, Granadeiro CM, Balula SS. Lindqvist@Nanoporous MOF-Based Catalyst for Effective Desulfurization of Fuels. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2887. [PMID: 36014754 PMCID: PMC9414597 DOI: 10.3390/nano12162887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 05/14/2023]
Abstract
An effective and sustainable oxidative desulfurization process for treating a multicomponent model fuel was successfully developed using as a heterogeneous catalyst a composite material containing as an active center the europium Lindqvist [Eu(W5O18)2]9- (abbreviated as EuW10) encapsulated into the nanoporous ZIF-8 (zeolitic imidazolate framework) support. The EuW10@ZIF-8 composite was obtained through an impregnation procedure, and its successful preparation was confirmed by various characterization techniques (FT-IR, XRD, SEM/EDS, ICP-OES). The catalytic activity of the composite and the isolated EuW10 was evaluated in the desulfurization of a multicomponent model fuel containing dibenzothiophene derivatives (DBT, 4-MDBT and 4,6-DMDBT) with a total sulfur concentration of 1500 ppm. Oxidative desulfurization was performed using an ionic liquid as extraction solvent and aqueous hydrogen peroxide as oxidant. The catalytic results showed a remarkable desulfurization performance, with 99.5 and 94.7% sulfur removal in the first 180 min, for the homogeneous active center EuW10 and the heterogeneous EuW10@ZIF-8 catalysts, respectively. Furthermore, the stability of the nanocomposite catalyst was investigated by reusing and recycling processes. A superior retention of catalyst activity in consecutive desulfurization cycles was observed in the recycling studies when compared with the reusing experiments. Nevertheless, the nanostructure of ZIF-8 incorporating the active POM (polyoxometalate) was shown to be highly suitable for guaranteeing the absence of POM leaching, although structural modification was found for ZIF-8 after catalytic use that did not influenced catalytic performance.
Collapse
Affiliation(s)
- Simone Fernandes
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Daniela Flores
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Daniel Silva
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Isabel Santos-Vieira
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fátima Mirante
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Carlos M. Granadeiro
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Salete S. Balula
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
4
|
Lindqvist versus Keggin-Type Polyoxometalates as Catalysts for Effective Desulfurization of Fuels. Catalysts 2022. [DOI: 10.3390/catal12060581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A correlation between polyoxotungstate structures and their catalytic performance for oxidative desulfurization processes was investigated. Bridged lanthanopolyoxometalates that incorporate identical metallic centers with Keggin- Eu[PW11O39]11− and Lindqvist-type [Eu(W5O18)2]9− structures were used as catalysts for the oxidation of the most representative refractory sulfur compounds. Both compounds were able to desulfurize a multicomponent model diesel under sustainable conditions, i.e., using ionic liquid as an extraction solvent and hydrogen peroxide as an oxidant. However, the Lindqvist catalyst appeared to achieve complete desulfurization faster than the Keggin catalyst while using a lesser amount of catalyst and oxidant. Furthermore, the reusable capacity of the Lindqvist-type [Eu(W5O18)2]9− was confirmed for consecutive oxidative desulfurization processes. The contribution of the lanthanide metallic center for the catalytic performance of these compounds was investigated by studying the analogous [TB(W5O18)2]9− compound. Identical desulfurization efficiency was obtained, even reusing this catalyst in consecutive reaction cycles. These results indicate that the active catalytic center of these compounds is probably related to the octahedral tungsten centers. However, a higher number of tungsten centers in the polyoxometalate structure did not result in higher catalytic activity.
Collapse
|
5
|
Strimaite M, Harman CLG, Duan H, Wang Y, Davies GL, Williams GR. Layered terbium hydroxides for simultaneous drug delivery and imaging. Dalton Trans 2021; 50:10275-10290. [PMID: 34254077 DOI: 10.1039/d1dt01251g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Layered rare-earth hydroxides have begun to gather increasing attention as potential theranostic platforms owing to their extensive intercalation chemistry combined with magnetic and fluorescent properties. In this work, the potential of layered terbium hydroxide (LTbH) as a platform for simultaneous drug delivery and fluorescence imaging was evaluated. LTbH-Cl ([Tb2(OH)5]Cl·yH2O) was loaded with three nonsteroidal anti-inflammatory drugs (diclofenac, ibuprofen, and naproxen) via ion-exchange. Drug release studies in phosphate buffered saline (pH = 7.4) revealed all three formulations release their drug cargo rapidly over the course of approximately 5 hours. In addition, solid state fluorescence studies indicated that fluorescence intensity is strongly dependent on the identity of the guest anion. It was postulated that this feature may be used to track the extent of drug release from the formulation, which was subsequently successfully demonstrated for the ibuprofen loaded LTbH. Overall, LTbH exhibits good biocompatibility, high drug loading, and a strong, guest-dependent fluorescence signal, all of which are desirable qualities for theranostic applications.
Collapse
Affiliation(s)
- Margarita Strimaite
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Clarissa L G Harman
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Huan Duan
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Yuwei Wang
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing, 100029, PR China
| | - Gemma-Louise Davies
- Department of Chemistry, University College London, 20 Gordon St, Bloomsbury, London, WC1H 0AJ, UK
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
6
|
Gorbunova YG, Martynov AG, Birin KP, Tsivadze AY. NMR Spectroscopy—A Versatile Tool for Studying the Structure and Magnetic Properties of Paramagnetic Lanthanide Complexes in Solutions (Review). RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621020091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Wang C, Zhang X, Li J, Qi X, Guo Z, Wei H, Chu H. Gold Nanoparticles on Nanosheets Derived from Layered Rare-Earth Hydroxides for Catalytic Glycerol-to-Lactic Acid Conversion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:522-530. [PMID: 33393772 DOI: 10.1021/acsami.0c17732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Layered rare-earth hydroxides (LREHs), as a series of special lamellar compounds having a similar structure to layered double hydroxides (LDHs), are becoming a new type of catalyst materials. In this study, we have prepared a series of uniform LREH (RE = Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Tm) nanosheets through a reverse-microemulsion method. After deposition-precipitation of HAuCl4 and calcination, supported Au catalysts (denoted as Au/LREO) were subsequently obtained. The catalytic properties of all the derived Au/LREO catalysts were evaluated by aerobic conversion of glycerol to lactic acid under mild conditions (90 °C, 1 atm). Among these catalysts, Au/LPrO displays the best performances, including the highest glycerol conversion, lactic acid, and C3 product selectivity. Both the catalytic activities and the characterizations of the structure of Au/LREO indicate that the kind of rare-earth ions plays a key role in determining the Au particle size and its valence state and reducibility, which are the important factors correlated with the catalytic activities in glycerol conversion. In fact, the three features of gold particles, the extra-small size (∼3 nm), high content of Au0 species, and high reducibility, are the essential prerequisites for achieving the superior catalytic performance of Au/LPrO.
Collapse
Affiliation(s)
- Congying Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Xueqiong Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Jiefei Li
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Xingyue Qi
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Ziyang Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Hang Wei
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Haibin Chu
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
8
|
Synthesis of Arylsulfonyl Benzenediols by Sandwich Type Polyoxometalate Intercalated MgAl-Layered Double Hydroxides in Water at Room Temperature. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Design and Synthesis of Reusable Nanoparticles for Reversible Chemisorption of Hexavalent Chromium Anions from Aqueous Media and Catalysis. J CHEM-NY 2020. [DOI: 10.1155/2020/6375749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A magnetically active nanocomposite material has been synthesized from the reaction mixture of magnetite core iron nanoparticles electrostatically coated with SiO2, hydrotalcite nanosheets ([Eu8 (OH)20 (H2O)n]4+), and decatungstophosphate anion ([α-PW10O367−]). The resulting nanocomposite material, denoted as Fe3O4@SiO2@LEuH@PW10, is demonstrated to effectively adsorb chromate anions from aqueous solutions. The adsorption isotherms fit the Langmuir model with a capacity of 23 mmol·g−1 after 42 minutes at 25°C. The reaction is spontaneous at room temperature with 44.22 kJ·mol−1 of activation energy required. In addition, heating the chromate-adsorbed nanocomposite material at 40°C results in dissociation of the chromate anions from the nanocomposite material. As such, the recycled adsorbent Fe3O4@SiO2@LEuH@PW10 is reused for chromate removal in aqueous solutions for at least ten times without obvious loss of activity. This spontaneous reversible chemisorption mechanism for chromate adsorption provides a new pathway for separation and cleaning of industrial wastewater contaminated with chromate ions. The robust catalytic activity of the nanocomposite is also demonstrated.
Collapse
|
10
|
Layered Rare-Earth Hydroxide Unilameller Nanosheets: Synthesis, Characterization, and Adsorption. J CHEM-NY 2020. [DOI: 10.1155/2020/8923871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Unilameller nanosheets with a lateral dimension of one nanometer have been isolated from a colloidal solution of europium-containing layered rare-earth hydroxide (LRH) material by the flocculation method. The nanosheets were achieved by changing pH of the colloidal solution from 6.7 to 11.5. The resultant flocculated nanosheets show high efficiency in sorption of fluoride anions from aqueous media (40 mmol/g), providing a potentially useful sorbent material for water purification technology. The sorbent material is demonstrated to be reusable for at least ten times without a significant loss of adsorption efficiency. And the results fit the Langmuir adsorption curve, indicating the chemisorption nature of the nanosheets. Most importantly, the isolated nanosheets are expected to widen the applicability and flexibility in material synthesis using two-dimensional nanomaterials.
Collapse
|
11
|
Liu S, Li X, Zhang H. Synergistic effects of MOF-76 on layered double hydroxides with superior activity for extractive catalytic oxidative desulfurization. NEW J CHEM 2020. [DOI: 10.1039/d0nj00612b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The combination of MOF-76 with an LDH provides a completely new route for the synthesis of MOF–LDH advanced functional materials.
Collapse
Affiliation(s)
- Siqi Liu
- Institute of Polyoxometalate Chemistry
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Xiaonan Li
- Institute of Polyoxometalate Chemistry
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Hong Zhang
- Institute of Polyoxometalate Chemistry
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| |
Collapse
|
12
|
Xu J, Chen X, Xu Y, Du Y, Yan C. Ultrathin 2D Rare-Earth Nanomaterials: Compositions, Syntheses, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1806461. [PMID: 31018020 DOI: 10.1002/adma.201806461] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/01/2019] [Indexed: 05/25/2023]
Abstract
Ultrathin 2D nanomaterials possess promising properties due to electron confinement within single or a few atom layers. As an emerging class of functional materials, ultrathin 2D rare-earth nanomaterials may incorporate the unique optical, magnetic, and catalytic behaviors of rare-earth elements into layers, exhibiting great potential in various applications such as optoelectronics, magnetic devices, transistors, high-efficiency catalysts, etc. Despite its importance, reviews on ultrathin 2D rare-earth nanomaterials or related topics are rare and only focus on a certain family of ultrathin 2D rare-earth nanomaterials. This work is the first comprehensive review in this impressive field, which covers all families of ultrathin 2D rare-earth nanomaterials, illustrating their compositions, syntheses, and applications. After summarizing the current achievements, the challenges and opportunities of future research on ultrathin 2D rare-earth nanomaterials are evaluated.
Collapse
Affiliation(s)
- Jun Xu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Xiaoyun Chen
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yueshan Xu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Chunhua Yan
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
13
|
Ribeiro SO, Granadeiro CM, Almeida PL, Pires J, Capel-Sanchez MC, Campos-Martin JM, Gago S, de Castro B, Balula SS. Oxidative desulfurization strategies using Keggin-type polyoxometalate catalysts: Biphasic versus solvent-free systems. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.10.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Sun P, Zhang S, Xiang Z, Zhao T, Sun D, Zhang G, Chen M, Guo K, Xin X. Photoluminescent sensing vesicle platform self-assembled by polyoxometalate and ionic-liquid-type imidazolium gemini surfactants for the detection of Cr3+ and MnO4− ions. J Colloid Interface Sci 2019; 547:60-68. [DOI: 10.1016/j.jcis.2019.03.085] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 01/29/2023]
|
15
|
Zhang H, Guo L, Xie Z, Xin X, Sun D, Yuan S. Tunable Aggregation-Induced Emission of Polyoxometalates via Amino Acid-Directed Self-Assembly and Their Application in Detecting Dopamine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13736-13745. [PMID: 27973851 DOI: 10.1021/acs.langmuir.6b03709] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this work, through the aqueous phase self-assembly of an Eu-containing polyoxometalate (POM), Na9[EuW10O36]·32H2O (EuW10) and different amino acids, we obtained spontaneously formed vesicles that showed luminescence enhancement for EuW10 and arginine (Arg), lysine (Lys), or histidine (His) complexes, but luminescence quenching for EuW10 and glutamic acid (Glu) or aspartic acid (Asp) complexes. The binding mechanisms between them have been explored at the molecular level by using different characterization techniques. It was found that EuW10 acted as polar head groups interact with the positively charged residues for alkaline amino acids, protonated amide groups for acidic amino and nonpolar acid aminos through electrostatic interactions, and the remaining segments of amino acids served as relatively hydrophobic parts aggregated together forming bilayer membrane structures. Moreover, the different influences of amino acids on the fluorescence property of EuW10 revealed that the electrostatic interaction between the positive charged group of amino acid and the polyanionic cluster dominates the fluorescence properties of assemblies. Furthermore, a turn-off sensing application of the EuW10/Arg platform to probe dopamine (DA) against various other biological molecules such as neurotransmitters or amino acids was also established. The concept of combining POMs with amino acids extends the research category of POM-based functional materials and devices.
Collapse
Affiliation(s)
- Han Zhang
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University , Jinan, 250100, People's Republic of China
| | - Lingyu Guo
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University , Jinan, 250100, People's Republic of China
| | - Zengchun Xie
- National Engineering Technology Research Center for Colloidal Materials, Shandong University , Jinan, 250100, People's Republic of China
| | - Xia Xin
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University , Jinan, 250100, People's Republic of China
- National Engineering Technology Research Center for Colloidal Materials, Shandong University , Jinan, 250100, People's Republic of China
| | - Di Sun
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University , Jinan, 250100, People's Republic of China
| | - Shiling Yuan
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University , Jinan, 250100, People's Republic of China
| |
Collapse
|
16
|
Li Y, Zhang M, Zhu W, Li M, Xiong J, Zhang Q, Wei Y, Li H. One-pot synthesis and characterization of tungsten-containing meso-ceria with enhanced heterogenous oxidative desulfurization in fuels. RSC Adv 2016. [DOI: 10.1039/c6ra06081a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The sulfide was absorbed by the mesoporous ceria, and then oxidized to its corresponding sulfone by the active peroxo species.
Collapse
Affiliation(s)
- Yanan Li
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Ming Zhang
- Institute for Energy Research
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Meng Li
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Jun Xiong
- Institute for Energy Research
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yanchen Wei
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Huaming Li
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
- Institute for Energy Research
| |
Collapse
|
17
|
Liu K, Yao Z, Song YF. Polyoxometalates Hosted in Layered Double Hydroxides: Highly Enhanced Catalytic Activity and Selectivity in Sulfoxidation of Sulfides. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b02298] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kai Liu
- State Key Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhixiao Yao
- State Key Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
18
|
|
19
|
Zhang M, Li M, Chen Q, Zhu W, Li H, Yin S, Li Y, Li H. One-pot synthesis of ordered mesoporous silica encapsulated polyoxometalate-based ionic liquids induced efficient desulfurization of organosulfur in fuel. RSC Adv 2015. [DOI: 10.1039/c5ra13787j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reaction procedure of desulfurization system.
Collapse
Affiliation(s)
- Ming Zhang
- Institute for Energy Research
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Meng Li
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Qi Chen
- School of Energy and Power Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Hongping Li
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Sheng Yin
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yanan Li
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Huaming Li
- Institute for Energy Research
- Jiangsu University
- Zhenjiang 212013
- P. R. China
- School of Chemistry and Chemical Engineering
| |
Collapse
|