1
|
Spielvogel KD, Coughlin EJ, Petras H, Luna JA, Benson A, Donahue CM, Kibasa A, Lee K, Salacinski R, Bart SC, Shaw SK, Shepherd JJ, Daly SR. The Influence of Redox-Innocent Donor Groups in Tetradentate Ligands Derived from o-Phenylenediamine: Electronic Structure Investigations with Nickel. Inorg Chem 2019; 58:12756-12774. [DOI: 10.1021/acs.inorgchem.9b01675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Kyle D. Spielvogel
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Ezra J. Coughlin
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hayley Petras
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Javier A. Luna
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Austin Benson
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Courtney M. Donahue
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Amani Kibasa
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Kyounghoon Lee
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Ryan Salacinski
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Suzanne C. Bart
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Scott K. Shaw
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - James J. Shepherd
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Scott R. Daly
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| |
Collapse
|
2
|
Kunert R, Philouze C, Jarjayes O, Thomas F. Stable M(II)-Radicals and Nickel(III) Complexes of a Bis(phenol) N-Heterocyclic Carbene Chelated to Group 10 Metal Ions. Inorg Chem 2019; 58:8030-8044. [PMID: 31185559 DOI: 10.1021/acs.inorgchem.9b00784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The tetradentate ligand based on (1-imidazolium-3,5-di tert-butylphenol) units was prepared and chelated to group 10 metal ions (Ni(II), Pd(II), and Pt(II)), affording complexes 1, 2, and 3, respectively. The X-ray crystal structures of 1-3 show a square planar metal ion coordinated to two N-heterocyclic carbenes and two phenolate moieties. The cyclic voltammetry curves of complexes 1-3 show two reversible oxidation waves in the range 0.11-0.21 V ( E1/21) and 0.55-0.65 V ( E1/22) vs Fc+/Fc, which are assigned to the successive oxidations of the phenolate moieties. One-electron oxidation affords mononuclear ( S = 1/2) systems. Complex 1+·SbF6- was remarkably stable, and its structure was characterized. The coordination sphere is slightly dissymmetric, while the typical patterns of phenoxyl radicals were observed within the ligand framework. Complex 1+ exhibits a rhombic signal at g = 2.087, 2.016, and 1.992, confirming its predominant phenoxyl radical character. The g-values are slightly smaller for 2+ (2.021, 2.008, and 1.983) and larger for 3+ (2.140, 1.999, and 1.885) yet consistent with phenoxyl radical species. The electronic spectra of 1+-3+ display an intervalence charge-transfer (IVCT) transition at 2396, 2600, and 2294 nm, respectively. Its intensity supports the description of cations 1+ and 3+ as mixed-valent (Class II/III) compounds according to the Robin Day classification. Complex 2+ behaves as a mixed-valent class II radical compound. In the presence of pyridine, radical species 1+ is successively converted into stable mono and bis(adducts), which are both Ni(III) complexes. Dications 1+2-3+2 were prepared electrochemically. They are electron paramagnetic resonance (EPR)-silent and do not show IVCT transition in their NIR spectra, consistent with a bis(radical) formulation. The proposed electronic structures are fully supported by density functional theory calculations.
Collapse
Affiliation(s)
- Romain Kunert
- Université Grenoble Alpes , UMR CNRS-5250, Département de Chimie Moléculaire , Grenoble F-38000 , France
| | - Christian Philouze
- Université Grenoble Alpes , UMR CNRS-5250, Département de Chimie Moléculaire , Grenoble F-38000 , France
| | - Olivier Jarjayes
- Université Grenoble Alpes , UMR CNRS-5250, Département de Chimie Moléculaire , Grenoble F-38000 , France
| | - Fabrice Thomas
- Université Grenoble Alpes , UMR CNRS-5250, Département de Chimie Moléculaire , Grenoble F-38000 , France
| |
Collapse
|
3
|
Adjei JA, Lough AJ, Gossage RA. Synthesis and characterisation of κ 2- N, O-oxazoline-enolate complexes of nickel(ii): explorations in coordination chemistry and metal-mediated polymerisation. RSC Adv 2019; 9:3956-3964. [PMID: 35518104 PMCID: PMC9060527 DOI: 10.1039/c8ra10304f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/10/2019] [Indexed: 11/21/2022] Open
Abstract
The synthesis and characterisation (UV-Vis, IR, X-ray diffraction, etc.) of a series of Ni(ii) complexes derived from both known and novel 2-acylmethyl-2-oxazolines (2a-g: i.e., (Z)-1-R-2-(4,4'-dimethyl-2'-oxazolin-2'-yl)eth-1-en-1-ol; R = -Ph, -2-furanyl, -p-NO2-Ph, -t-Bu, -2-thiofuranyl, p-NC-Ph, -CF3) is reported. These Ni materials (3a-g) represent the first group 10 metal complexes of this ligand class. All derivatives reported are paramagnetic (S = 1) compounds of formulae Ni(κ2-N,O-L)2 where L represents an enolate of structure (Z)-1-R-2-(4',4'-dimethyl-2'-oxazolin-2'-yl)eth-1-en-1-ate formed via proton loss from 2. The air- and moisture-stable metal complexes feature a less typical distorted seesaw-shaped disposition of binding atoms around the metal centre for six structurally characterised (X-ray) examples. Preliminary investigations indicate that 3a (R = -Ph) is a useful catalysts for olefin polymerisation in the presence of alkylaluminum reagents.
Collapse
Affiliation(s)
- Jeanette A Adjei
- Department of Chemistry & Biology, Ryerson University 350 Victoria Street Toronto ON M5B 2K3 Canada
| | - Alan J Lough
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Robert A Gossage
- Department of Chemistry & Biology, Ryerson University 350 Victoria Street Toronto ON M5B 2K3 Canada
| |
Collapse
|
4
|
Chiang L, Wasinger EC, Shimazaki Y, Young V, Storr T, Stack TDP. Electronic Structure and Reactivity Studies of a Nonsymmetric One-Electron Oxidized Cu II Bis-phenoxide Complex. Inorganica Chim Acta 2018; 481:151-158. [PMID: 30581226 PMCID: PMC6301013 DOI: 10.1016/j.ica.2017.09.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The tetradentate mixed imino/amino phenoxide ligand (N-(3,5-di-tert-butylsalicylidene)-N'-(2-hydroxyl-3,5-di-tert-butylbenzyl))-trans-1,2-cyclohexanediamine (salalen) was complexed with CuII, and the resulting Cu complex (2) was characterized by a number of experimental techniques and theoretical calculations. Two quasi-reversible redox processes for 2, as observed by cyclic voltammetry, demonstrated the potential stability of oxidized forms, and also the increased electron-donating ability of the salalen ligand in comparison to the salen analogue. The electronic structure of the one-electron oxidized [2]+ was then studied in detail, and Cu K-edge X-ray Absorption Spectroscopy (XAS) measurements confirmed a CuII-phenoxyl radical complex in solution. Subsequent resonance Raman (rR) and variable temperature 1H NMR studies, coupled with theoretical calculations, showed that [2• ]+ is a triplet (S = 1) CuII-phenoxyl radical species, with localization of the radical on the more electron-rich aminophenoxide. Attempted isolation of X-ray quality crystals of [2• ]+ afforded [2H]+, with a protonated phenol bonded to CuII, and an additional H-bonding interaction with the SbF6 - counterion. Stoichiometric reaction of dilute solutions of [2• ]+ with benzyl alcohol showed that the complex reacted in a similar manner as the oxidized CuII-salen analogue, and does not exhibit a substrate-binding pre-equilibrium as observed for the oxidized bisaminophenoxide CuII-salan derivative.
Collapse
Affiliation(s)
- Linus Chiang
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Erik C Wasinger
- Department of Chemistry and Biochemistry, California State University, Chico, CA 95928, USA
| | - Yuichi Shimazaki
- College of Science, Ibaraki University. Bunkyo, Mito, 310-8512, Japan
| | - Victor Young
- Department of Chemistry, The University of Minnesota, Minneapolis, MN 55455, USA
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | - T Daniel P Stack
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Electronic and magnetic properties of the [Ni(salophen)]: An experimental and DFT study. J Adv Res 2018; 9:27-33. [PMID: 30046483 PMCID: PMC6057394 DOI: 10.1016/j.jare.2017.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 11/27/2022] Open
Abstract
The effect of the coordination of a Ni(II) ion on the electronic and magnetic properties of the ligand salophen were experimentally and theoretically evaluated. The complex [Ni(salophen)] was synthesized and characterized through FTIR and an elemental analysis. Spectral data obtained using DMSO as a solvent showed that the ligand absorption profile was significantly disturbed after the coordination of the metal atom. In addition to a redshift of the salophen ligand absorption bands, mainly composed by π → π∗electronic transitions, additional bands of around 470 nm were observed, resulting in a partial metal-to-ligand charge transfer. Furthermore, a significant increment of its band intensities was observed, favoring a more intense absorption in a broader range of the visible spectrum, which is a desired characteristic for applications in the field of organic electronics. This finding is related to an increment of the planarity and consequent electron delocalization of the macrocycle in the complex, which was estimated by the calculation of the current strengths at the PBE0/cc-pVTZ (Dyall.v3z for Ni(II)) level.
Collapse
|
6
|
Sahani AJ, Jayaram RV, Burange AS. C-Se cross-coupling of arylboronic acids and diphenyldiselenides over non precious transition metal (Fe, Cu and Ni) complexes. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.02.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Lecarme L, Chiang L, Moutet J, Leconte N, Philouze C, Jarjayes O, Storr T, Thomas F. The structure of a one-electron oxidized Mn(iii)-bis(phenolate)dipyrrin radical complex and oxidation catalysis control via ligand-centered redox activity. Dalton Trans 2018; 45:16325-16334. [PMID: 27711805 DOI: 10.1039/c6dt02163h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The tetradentate ligand dppH3, which features a half-porphyrin and two electron-rich phenol moieties, was prepared and chelated to manganese. The mononuclear Mn(iii)-dipyrrophenolate complex 1 was structurally characterized. The metal ion lies in a square pyramidal environment, the apical position being occupied by a methanol molecule. Complex 1 displays two reversible oxidation waves at 0.00 V and 0.47 V vs. Fc+/Fc, which are assigned to ligand-centered processes. The one-electron oxidized species 1+ SbF6- was crystallized, showing an octahedral Mn(iii) center with two water molecules coordinated at both apical positions. The bond distance analysis and DFT calculations disclose that the radical is delocalized over the whole aromatic framework. Complex 1+ SbF6- exhibits an Stot = 3/2 spin state due to the antiferromagnetic coupling between Mn(iii) and the ligand radical. The zero field splitting parameters are D = 1.6 cm-1, E/D = 0.18(1), g⊥ = 1.99 and g∥ = 1.98. The dication 12+ is an integer spin system, which is assigned to a doubly oxidized ligand coordinated to a Mn(iii) metal center. Both 1 and 1+ SbF6- catalyze styrene oxidation in the presence of PhIO, but the nature of the main reaction product is different. Styrene oxide is the main reaction product when using 1, but phenylacetaldehyde is formed predominantly when using 1+ SbF6-. We examined the ability of complex 1+ SbF6- to catalyze the isomerization of styrene oxide and found that it is an efficient catalyst for the anti-Markovnikov opening of styrene oxide. The formation of phenylacetaldehyde from styrene therefore proceeds in a tandem E-I (epoxidation-isomerization) mechanism in the case of 1+ SbF6-. This is the first evidence of control of the reactivity for styrene oxidation by changing the oxidation state of a catalyst based on a redox-active ligand.
Collapse
Affiliation(s)
- Laureline Lecarme
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes, B. P. 53, 38041 Grenoble cedex 9, France.
| | - Linus Chiang
- Simon Fraser University, Department of Chemistry, 8888 University Drive, Burnaby, British Columbia V5A-1S4, Canada
| | - Jules Moutet
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes, B. P. 53, 38041 Grenoble cedex 9, France.
| | - Nicolas Leconte
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes, B. P. 53, 38041 Grenoble cedex 9, France.
| | - Christian Philouze
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes, B. P. 53, 38041 Grenoble cedex 9, France.
| | - Olivier Jarjayes
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes, B. P. 53, 38041 Grenoble cedex 9, France.
| | - Tim Storr
- Simon Fraser University, Department of Chemistry, 8888 University Drive, Burnaby, British Columbia V5A-1S4, Canada
| | - Fabrice Thomas
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes, B. P. 53, 38041 Grenoble cedex 9, France.
| |
Collapse
|
8
|
Clarke RM, Jeen T, Rigo S, Thompson JR, Kaake LG, Thomas F, Storr T. Exploiting exciton coupling of ligand radical intervalence charge transfer transitions to tune NIR absorption. Chem Sci 2017; 9:1610-1620. [PMID: 29675206 PMCID: PMC5887452 DOI: 10.1039/c7sc04537a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/18/2017] [Indexed: 12/03/2022] Open
Abstract
We detail the rational design of a series of bimetallic bis-ligand radical Ni salen complexes in which the relative orientation of the ligand radical chromophores provides a mechanism to tune the energy of intense intervalence charge transfer (IVCT) bands in the near infrared (NIR) region.
We detail the rational design of a series of bimetallic bis-ligand radical Ni salen complexes in which the relative orientation of the ligand radical chromophores provides a mechanism to tune the energy of intense intervalence charge transfer (IVCT) bands in the near infrared (NIR) region. Through a suite of experimental (electrochemistry, electron paramagnetic resonance spectroscopy, UV-vis-NIR spectroscopy) and theoretical (density functional theory) techniques, we demonstrate that bimetallic Ni salen complexes form bis-ligand radicals upon two-electron oxidation, whose NIR absorption energies depend on the geometry imposed in the bis-ligand radical complex. Relative to the oxidized monomer [1˙]+ (E = 4500 cm–1, ε = 27 700 M–1 cm–1), oxidation of the cofacially constrained analogue 2 to [2˙˙]2+ results in a blue-shifted NIR band (E = 4830 cm–1, ε = 42 900 M–1 cm–1), while oxidation of 5 to [5˙˙]2+, with parallel arrangement of chromophores, results in a red-shifted NIR band (E = 4150 cm–1, ε = 46 600 M–1 cm–1); the NIR bands exhibit double the intensity in comparison to the monomer. Oxidation of the intermediate orientations results in band splitting for [3˙˙]2+ (E = 4890 and 4200 cm–1; ε = 26 500 and 21 100 M–1 cm–1), and a red-shift for [4˙˙]2+ using ortho- and meta-phenylene linkers, respectively. This study demonstrates for the first time, the applicability of exciton coupling to ligand radical systems absorbing in the NIR region and shows that by simple geometry changes, it is possible to tune the energy of intense low energy absorption by nearly 400 nm.
Collapse
Affiliation(s)
- Ryan M Clarke
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| | - Tiffany Jeen
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| | - Serena Rigo
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| | - John R Thompson
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| | - Loren G Kaake
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| | - Fabrice Thomas
- Départment de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250 , Université Grenoble-Alpes , B.P. 53 , 38041 Grenoble Cedex 9 , France
| | - Tim Storr
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| |
Collapse
|
9
|
|
10
|
Sreekumar SS, Mohan N, Kurup MRP. Water-Encapsulated Ni(II) Salphen-Type Host Complexes: Experimental and Theoretical Analysis of Potentially Bioactive Quasi-Isostructural Polymorphs. ChemistrySelect 2017. [DOI: 10.1002/slct.201701229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sreejith S. Sreekumar
- Department of Applied chemistry; Cochin University of Science and Technology; Kochi Kerala-682022 India
| | - Nithya Mohan
- Department of Applied chemistry; Cochin University of Science and Technology; Kochi Kerala-682022 India
| | - Maliyeckal R. Prathapachandra Kurup
- Department of Applied chemistry; Cochin University of Science and Technology; Kochi Kerala-682022 India
- Department of chemistry, School of Physical Sciences; Central University of Kerala, Riverside Transit campus; Neeleshwar Kerala-671314 India
| |
Collapse
|
11
|
Doistau B, Benda L, Cantin JL, Chamoreau LM, Ruiz E, Marvaud V, Hasenknopf B, Vives G. Six States Switching of Redox-Active Molecular Tweezers by Three Orthogonal Stimuli. J Am Chem Soc 2017; 139:9213-9220. [PMID: 28605200 DOI: 10.1021/jacs.7b02945] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A six level molecular switch based on terpyridine(Ni-salphen)2 tweezers and addressable by three orthogonal stimuli (metal coordination, redox reaction, and guest binding) is reported. By a metal coordination stimulus, the tweezers can be mechanically switched from an open "W"-shaped conformation to a closed "U"-shaped form. Theses two states can each be reversibly oxidized by the redox stimulus and bind to a pyrazine guest resulting in four additional states. All six states are stable and accessible by the right combination of stimuli and were studied by NMR, XRD, EPR spectroscopy, and DFT calculations. The combination of the supramolecular concepts of mechanical motion and guest binding with the redox noninnocent and valence tautomerism properties of Ni-salphen complexes added two new dimensions to a mechanical switch.
Collapse
Affiliation(s)
- Benjamin Doistau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire , UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Lorien Benda
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire , UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Jean-Louis Cantin
- Sorbonne Universités, UPMC Univ Paris 06, INSP , 4 place Jussieu, 75005 Paris, France
| | - Lise-Marie Chamoreau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire , UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Eliseo Ruiz
- Departament de Química Inorgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona , Diagonal 645, E-08028 Barcelona, Spain
| | - Valérie Marvaud
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire , UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Bernold Hasenknopf
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire , UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Guillaume Vives
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire , UMR 8232, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
12
|
Broere DLJ, Plessius R, Tory J, Demeshko S, de Bruin B, Siegler MA, Hartl F, van der Vlugt JI. Localized Mixed-Valence and Redox Activity within a Triazole-Bridged Dinucleating Ligand upon Coordination to Palladium. Chemistry 2016; 22:13965-13975. [PMID: 27531163 DOI: 10.1002/chem.201601900] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Indexed: 12/31/2022]
Abstract
The new dinucleating redox-active ligand (LH4 ), bearing two redox-active NNO-binding pockets linked by a 1,2,3-triazole unit, is synthetically readily accessible. Coordination to two equivalents of PdII resulted in the formation of paramagnetic (S=1/2 ) dinuclear Pd complexes with a κ2 -N,N'-bridging triazole and a single bridging chlorido or azido ligand. A combined spectroscopic, spectroelectrochemical, and computational study confirmed Robin-Day Class II mixed-valence within the redox-active ligand, with little influence of the secondary bridging anionic ligand. Intervalence charge transfer was observed between the two ligand binding pockets. Selective one-electron oxidation allowed for isolation of the corresponding cationic ligand-based diradical species. SQUID (super-conducting quantum interference device) measurements of these compounds revealed weak anti-ferromagnetic spin coupling between the two ligand-centered radicals and an overall singlet ground state in the solid state, which is supported by DFT calculations. The rigid and conjugated dinucleating redox-active ligand framework thus allows for efficient electronic communication between the two binding pockets.
Collapse
Affiliation(s)
- Daniël L J Broere
- Homogeneous, Bioinspired and Supramolecular Catalysis, van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Raoul Plessius
- Homogeneous, Bioinspired and Supramolecular Catalysis, van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Joanne Tory
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammanstrasse 4, 37077, Göttingen, Germany
| | - Bas de Bruin
- Homogeneous, Bioinspired and Supramolecular Catalysis, van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Maxime A Siegler
- Department of Chemistry, John Hopkins University, 3400 N. Charles St., Baltimore, MD, 21218, USA
| | - Frantisek Hartl
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - Jarl Ivar van der Vlugt
- Homogeneous, Bioinspired and Supramolecular Catalysis, van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Herasymchuk K, Chiang L, Hayes CE, Brown ML, Ovens JS, Patrick BO, Leznoff DB, Storr T. Synthesis and electronic structure determination of uranium(vi) ligand radical complexes. Dalton Trans 2016; 45:12576-86. [DOI: 10.1039/c6dt02089e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pentagonal bipyramidal uranyl (UO22+) complexes of salen ligands were prepared and the electronic structure of the one-electron oxidized species[1a–c]+were investigated in solution.
Collapse
Affiliation(s)
| | - Linus Chiang
- Department of Chemistry
- Simon Fraser University
- Burnaby
- Canada
| | | | | | | | - Brian O. Patrick
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | | | - Tim Storr
- Department of Chemistry
- Simon Fraser University
- Burnaby
- Canada
| |
Collapse
|
14
|
Thomas F. Ligand-centred oxidative chemistry in sterically hindered salen complexes: an interesting case with nickel. Dalton Trans 2016; 45:10866-77. [DOI: 10.1039/c6dt00942e] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Salen ligands are ubiquitous chelators, whose nickel complexes readily undergo a ligand-centred redox chemistry in non-coordinating solvents.
Collapse
Affiliation(s)
- F. Thomas
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250
- Université Grenoble-Alpes
- 38041 Grenoble cedex 9
- France
| |
Collapse
|
15
|
Realista S, Ramgi P, Cardoso BDP, Melato AI, Viana AS, Calhorda MJ, Martinho PN. Heterodinuclear Ni(ii) and Cu(ii) Schiff base complexes and their activity in oxygen reduction. Dalton Trans 2016; 45:14725-33. [DOI: 10.1039/c6dt01903j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
New hetero- and homo-dinuclear Cu/Ni complexes electropolymerise potentiodynamically on glassy carbon electrodes and the polymers reduce dioxygen in water.
Collapse
Affiliation(s)
- Sara Realista
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
| | - Priscila Ramgi
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
| | - Bernardo de P. Cardoso
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
| | - Ana I. Melato
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
| | - Ana S. Viana
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
| | - Maria José Calhorda
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
| | - Paulo N. Martinho
- Centro de Química e Bioquímica
- DQB
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
| |
Collapse
|
16
|
Clarke RM, Hazin K, Thompson JR, Savard D, Prosser KE, Storr T. Electronic Structure Description of a Doubly Oxidized Bimetallic Cobalt Complex with Proradical Ligands. Inorg Chem 2015; 55:762-74. [DOI: 10.1021/acs.inorgchem.5b02231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ryan M. Clarke
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Khatera Hazin
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - John R. Thompson
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Didier Savard
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Kathleen E. Prosser
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Tim Storr
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
17
|
Chiang L, Clarke RM, Herasymchuk K, Sutherland M, Prosser KE, Shimazaki Y, Storr T. Electronic Structure Evaluation of an Oxidized Tris(methoxy)-Substituted Ni Salen Complex. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201501144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|