1
|
Xie J, Islam S, Wang L, Zheng X, Xu M, Su X, Huang S, Suits L, Yang G, Eswara P, Cai J, Ming LJ. A tale of two old drugs tetracycline and salicylic acid with new perspectives-Coordination chemistry of their Co(II) and Ni(II) complexes, redox activity of Cu(II) complex, and molecular interactions. J Inorg Biochem 2024; 262:112757. [PMID: 39423693 DOI: 10.1016/j.jinorgbio.2024.112757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/13/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Extensive use of the broad-spectrum tetracycline antibiotics (TCs) has resulted their wide spread in the environment and drive new microecological balances, including the infamous antibiotic resistance. TCs require metal ions for their antibiotic activity and resistance via interactions with ribosome and tetracycline repressor TetR, respectively, at specific metal-binding sites. Moreover, the Lewis-acidic metal center(s) in metallo-TCs can interact with Lewis-basic moieties of many bioactive secondary metabolites, which in turn may alter their associated chemical equilibria and biological activities. Thus, it is ultimately important to reveal detailed coordination chemistry of metallo-TC complexes. Herein, we report (a) conclusive specific Co2+, Ni2+, and Cu2+-binding of TC revealed by paramagnetic 1H NMR, showing different conformations of the coordination and different metal-binding sites in solution and solid state, (b) significant metal-mediated activity of Cu-TC toward catechol oxidation with different mechanisms by air and H2O2 (i.e., mono- and di-nuclear pathways, respectively), (c) interactions of metallo-TCs with bioactive salicylic acid and its precursor benzoic acid, and (d) noticeable change of TC antibiotic activity by metal and salicylic acid. The results imply that TCs may play broad and versatile roles in maintaining certain equilibria in microecological environments in addition to their well-established antibiotic activity. We hope the results may foster further exploration of previously unknown metal-mediated activities of metallo-TC complexes and other metalloantibiotics.
Collapse
Affiliation(s)
- Jinhua Xie
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Shahedul Islam
- Department of Chemistry, University of South Florida, Tampa, FL 33620-5250, USA
| | - Le Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Xiaojing Zheng
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Mengsheng Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Xiqi Su
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Shaohua Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Logan Suits
- Department of Molecular Biosciences, ISA6207, University of South Florida, Tampa, FL 33620, USA
| | - Guang Yang
- Department of Chemistry, University of South Florida, Tampa, FL 33620-5250, USA
| | - Prahathees Eswara
- Department of Molecular Biosciences, ISA6207, University of South Florida, Tampa, FL 33620, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620-5250, USA
| | - Li-June Ming
- Department of Chemistry, University of South Florida, Tampa, FL 33620-5250, USA; Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, PR China.
| |
Collapse
|
3
|
Corcoran CJ, Tang CC, Lykourinou V, Terentis AC, Angerhofer A, Ming LJ. To be structurally well-defined or not to be, that is not the question for iron(III)–poly(4-Vinylpyridine-co-acrylamide) to exhibit catechol dioxygenase activity! CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2017.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
4
|
Thanneeru S, Duay SS, Jin L, Fu Y, Angeles-Boza AM, He J. Single Chain Polymeric Nanoparticles to Promote Selective Hydroxylation Reactions of Phenol Catalyzed by Copper. ACS Macro Lett 2017; 6:652-656. [PMID: 35650866 DOI: 10.1021/acsmacrolett.7b00300] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-containing single chain polymeric nanoparticles (SCPNs) can be used as synthetic mimics of metalloenzymes. Currently, the role of the folded polymer backbones on the activity and selectivity of metal sites is not clear. Herein, we report our findings on how polymeric frameworks modulate the coordination of Cu sites and the catalytic activity/selectivity of Cu-containing SCPNs mimicking monophenol hydroxylation reactions. Imidazole-functionalized copolymers of poly(methyl methacrylate-co-3-imidazolyl-2-hydroxy propyl methacrylate) were used for intramolecular Cu-imidazole binding that triggered the self-folding of polymers. Polymer chains imposed steric hindrance which yielded unsaturated Cu sites with an average coordination number of 3.3. Cu-containing SCPNs showed a high selectivity for the hydroxylation reaction of phenol to catechol, >80%, with a turnover frequency of >870 h-1 at 60 °C. The selectivity was largely influenced by the flexibility of the folded polymer backbone where a more flexible polymer backbone allows the cooperative catalysis of two Cu sites. The second coordination sphere provided by the folded polymer that has been less studied is therefore critical in the design of active mimics of metalloenzymes.
Collapse
Affiliation(s)
- Srinivas Thanneeru
- Department of Chemistry, and ‡Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Searle S Duay
- Department of Chemistry, and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Lei Jin
- Department of Chemistry, and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Youjun Fu
- Department of Chemistry, and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry, and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jie He
- Department of Chemistry, and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|