1
|
Chen S, An L, Yang S. Low-Molecular-Weight Fe(III) Complexes for MRI Contrast Agents. Molecules 2022; 27:molecules27144573. [PMID: 35889445 PMCID: PMC9324404 DOI: 10.3390/molecules27144573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/02/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Fe(III) complexes have again attracted much attention for application as MRI contrast agents in recent years due to their high thermodynamic stability, low long-term toxicity, and large relaxivity at a higher magnetic field. This mini-review covers the recent progress on low-molecular-weight Fe(III) complexes, which have been considered as one of the promising alternatives to clinically used Gd(III)-based contrast agents. Two kinds of complexes including mononuclear Fe(III) complexes and multinuclear Fe(III) complexes are summarized in sequence, with a specific highlight of the structural relationships between the complexes and their relaxivity and thermodynamic stability. In additional, the future perspectives for the design of low-molecular-weight Fe(III) complexes for MRI contrast agents are suggested.
Collapse
Affiliation(s)
- Shangjun Chen
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China;
| | - Lu An
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China;
| | - Shiping Yang
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China;
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China;
- Correspondence:
| |
Collapse
|
2
|
Blahut J, Benda L, Kotek J, Pintacuda G, Hermann P. Paramagnetic Cobalt(II) Complexes with Cyclam Derivatives: Toward 19F MRI Contrast Agents. Inorg Chem 2020; 59:10071-10082. [DOI: 10.1021/acs.inorgchem.0c01216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jan Blahut
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
- High-Field NMR Centre, CNRS FRE2034/UCB de Lyon 1/ENS de Lyon, 5 rue de la Doua, 69100 Lyon-Villeurbanne, France
| | - Ladislav Benda
- High-Field NMR Centre, CNRS FRE2034/UCB de Lyon 1/ENS de Lyon, 5 rue de la Doua, 69100 Lyon-Villeurbanne, France
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
| | - Guido Pintacuda
- High-Field NMR Centre, CNRS FRE2034/UCB de Lyon 1/ENS de Lyon, 5 rue de la Doua, 69100 Lyon-Villeurbanne, France
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
| |
Collapse
|
3
|
Ozumerzifon TJ, Higgins RF, Joyce JP, Kolanowski JL, Rappé AK, Shores MP. Evidence for Reagent-Induced Spin-State Switching in Tripodal Fe(II) Iminopyridine Complexes. Inorg Chem 2019; 58:7785-7793. [DOI: 10.1021/acs.inorgchem.9b00340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tarik J. Ozumerzifon
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Robert F. Higgins
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Justin P. Joyce
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jacek L. Kolanowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Anthony K. Rappé
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Matthew P. Shores
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
4
|
Harris M, Kolanowski JL, O'Neill ES, Henoumont C, Laurent S, Parac-Vogt TN, New EJ. Drawing on biology to inspire molecular design: a redox-responsive MRI probe based on Gd(iii)-nicotinamide. Chem Commun (Camb) 2018; 54:12986-12989. [PMID: 30387480 DOI: 10.1039/c8cc07092j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel, reversible redox-active MRI probe, GdNR1, has been developed for the study of redox changes associated with diseased states. This system exhibits switching in relaxivity upon reduction and oxidation of the appended nicotinimidium. Relaxivity studies and cyclic voltammetry confirmed the impressive reversibility of this system, at a biologically-relevant reduction potential. A 2.5-fold increase in relaxivity was observed upon reduction of the complex, which corresponds to a change in the number of inner-sphere water molecules, as confirmed by luminescence lifetimes of the Eu(iii) analogue and NMRD studies. This is the first example of a redox-responsive MRI probe utilising the biologically-inspired nicotinimidium redox switch. In the future this strategy could enable the non-invasive identification of hypoxic tissue and related cardiovascular disease.
Collapse
Affiliation(s)
- Michael Harris
- Department of Chemistry, KU Leuven, Celestijnlaan 200F, Heverlee 3001, Belgium
| | | | | | | | | | | | | |
Collapse
|
5
|
Renfrew AK, O'Neill ES, Hambley TW, New EJ. Harnessing the properties of cobalt coordination complexes for biological application. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.11.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Benders S, Strassl F, Fenger B, Blümich B, Herres-Pawlis S, Küppers M. Imaging of copper oxygenation reactions in a bubble flow. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:826-830. [PMID: 29682795 DOI: 10.1002/mrc.4742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Reactions of gases with liquids play a crucial role in the production of many bulk chemicals. Often, the gas is bubbled into the chosen reactor. Most of the processes at the gas-liquid interface of the bubbles and in their tails are not fully understood and warrant further investigation. For this purpose, NMR imaging or Magnetic Resonance Imaging has been applied to visualize some of the processes in the bubble tail. To generate sufficient contrast, a magnetogenic gas-liquid reaction associated with a change of magnetic state, from diamagnetic to paramagnetic, was employed. In this work, a copper(I)-based compound was oxidized to copper(II) to exploit relaxation contrast. To match the speed of the rising bubbles to the acquisition time of the spin-echo imaging sequence, polyethylene glycol was added to increase the viscosity of the reacting solution. Images of the oxygen ingress into a static solution as well as of oxygen bubbles rising in the solution are presented. In both cases, changes in magnetism were observed, which reported the hydrodynamic processes.
Collapse
Affiliation(s)
- Stefan Benders
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Aachen, 52074, Germany
| | - Florian Strassl
- Institut für Anorganische Chemie, RWTH Aachen University, Aachen, 52074, Germany
| | - Bastian Fenger
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Aachen, 52074, Germany
| | - Bernhard Blümich
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Aachen, 52074, Germany
| | - Sonja Herres-Pawlis
- Institut für Anorganische Chemie, RWTH Aachen University, Aachen, 52074, Germany
| | - Markus Küppers
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Aachen, 52074, Germany
| |
Collapse
|
7
|
Thorarinsdottir AE, Gaudette AI, Harris TD. Spin-crossover and high-spin iron(ii) complexes as chemical shift 19F magnetic resonance thermometers. Chem Sci 2017; 8:2448-2456. [PMID: 28694955 PMCID: PMC5477811 DOI: 10.1039/c6sc04287b] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/20/2016] [Indexed: 12/22/2022] Open
Abstract
The potential utility of paramagnetic transition metal complexes as chemical shift 19F magnetic resonance (MR) thermometers is demonstrated. Further, spin-crossover FeII complexes are shown to provide much higher temperature sensitivity than do the high-spin analogues, owing to the variation of spin state with temperature in the former complexes. This approach is illustrated through a series of FeII complexes supported by symmetrically and asymmetrically substituted 1,4,7-triazacyclononane ligand scaffolds bearing 3-fluoro-2-picolyl derivatives as pendent groups (L x ). Variable-temperature magnetic susceptibility measurements, in conjunction with UV-vis and NMR data, show thermally-induced spin-crossover for [Fe(L1)]2+ in H2O, with T1/2 = 52(1) °C. Conversely, [Fe(L2)]2+ remains high-spin in the temperature range 4-61 °C. Variable-temperature 19F NMR spectra reveal the chemical shifts of the complexes to exhibit a linear temperature dependence, with the two peaks of the spin-crossover complex providing temperature sensitivities of +0.52(1) and +0.45(1) ppm per °C in H2O. These values represent more than two-fold higher sensitivity than that afforded by the high-spin analogue, and ca. 40-fold higher sensitivity than diamagnetic perfluorocarbon-based thermometers. Finally, these complexes exhibit excellent stability in a physiological environment, as evidenced by 19F NMR spectra collected in fetal bovine serum.
Collapse
Affiliation(s)
- Agnes E Thorarinsdottir
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208-3113 , USA .
| | - Alexandra I Gaudette
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208-3113 , USA .
| | - T David Harris
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208-3113 , USA .
| |
Collapse
|
8
|
Gaudette AI, Thorarinsdottir AE, Harris TD. pH-Dependent spin state population and 19F NMR chemical shift via remote ligand protonation in an iron(ii) complex. Chem Commun (Camb) 2017; 53:12962-12965. [DOI: 10.1039/c7cc08158h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An FeII complex that features a pH-dependent spin state population and 19F chemical shift, by virtue of a variable ligand protonation state, is described.
Collapse
|
9
|
O’Neill ES, Kolanowski JL, Bonnitcha PD, New EJ. A cobalt(ii) complex with unique paraSHIFT responses to anions. Chem Commun (Camb) 2017; 53:3571-3574. [DOI: 10.1039/c7cc00619e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A cobalt(ii) complex can distinguish between anions by observing the paramagnetic 1H NMR shift.
Collapse
Affiliation(s)
- E. S. O’Neill
- School of Chemistry
- The University of Sydney
- Australia
| | | | - P. D. Bonnitcha
- Sydney Medical School
- Royal North Shore Hospital
- St. Leonards
- Australia
| | - E. J. New
- School of Chemistry
- The University of Sydney
- Australia
| |
Collapse
|