1
|
Synthesis, characterization and reactivity of thiolate-bridged cobalt-iron and ruthenium-iron complexes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
Wei N, Yang D, Zhao J, Mei T, Zhang Y, Wang B, Qu J. Structure and Methylene Transfer Reactivity of Thiolate-Bridged Dichromium Methylene Complexes Derived from Dihalomethane via Cleavage of Two Carbon–Halogen Bonds. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Nianmin Wei
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Jinfeng Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Tao Mei
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Yixin Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People’s Republic of China
- State Key Laboratory of Bioreactor Engineering, Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
3
|
Gennari M, Duboc C. Bio-inspired, Multifunctional Metal-Thiolate Motif: From Electron Transfer to Sulfur Reactivity and Small-Molecule Activation. Acc Chem Res 2020; 53:2753-2761. [PMID: 33074643 DOI: 10.1021/acs.accounts.0c00555] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sulfur-rich metalloproteins and metalloenzymes, containing strongly covalent metal-thiolate (cysteinate) or metal-sulfide bonds in their active site, are ubiquitous in nature. The metal-sulfur motif is a highly versatile tool involved in various biological processes: (i) metal storage, transport, and detoxification; (ii) electron transfer; (iii) activation of the sulfur atom to promote different types of S-based reactions including S-alkylation, S-oxygenation, S-nitrosylation, or disulfide or thiyl radicals formation; (iv) activation of small earth-abundant molecules (such as water, dioxygen, superoxide radical anion, carbon oxides, nitrous oxide, and dinitrogen).This Account describes our investigations carried out during the past 10 years on bio-inspired and biomimetic low-nuclearity complexes containing metal-thiolate bonds. The general objective of these structural, spectroscopic, electrochemical, and catalytic studies was to determine structure-properties-function correlations useful to (i) understanding the peculiar features or the mechanism of the mimicked natural systems and/or (ii) reproducing enzymatic reactivities for specific catalytic applications.By employing a unique highly preorganized N2S2-donor ligand with two thiolate functions, in combination with different first-row transition metals (Mn, Fe, Co, Ni, Cu, Zn, or V), we got access to a series of bio-inspired sulfur-rich complexes displaying a widespread spectrum of structures, properties, and functions. We isolated a dicopper(I) complex that, for the first time, mimicked concomitantly the key structural, spectroscopic, and redox features of the biological CuA center, a highly efficient electron transfer agent involved in the respiratory enzyme cytochrome c oxidase. In the field of sulfur activation, we explored (i) sulfur methylation promoted by a Zn-dithiolate complex that mimics Zn-dependent thiolate alkylation proteins and shows different selectivity compared to the Ni and Co congeners and (ii) a series of Co, Fe, and Mn complexes as the first copper-free systems able to promote thiolate/disulfide interconversion mediated by (de)coordination of halides. Concerning metal-centered reactivity, we investigated two families of metal-thiolate catalysts for small-molecule activation, especially relevant in the fields of sustainable fuel production and energy conversion: (i) two isostructural Mn and Fe dinuclear complexes that activate and reduce dioxygen selectively, either to hydrogen peroxide or water as a function of the experimental conditions; (ii) a family of dinuclear MFe (M = Ni or Fe) hydrogenase mimics active for catalytic H2 evolution both in organic solution and on modified electrodes in water.This Account thus illustrates how the versatility of thiolate ligation can support selected functions for transition metal complexes, depending on the nature of the metal, the nuclearity of the complex, the presence and type of co-ligands, the second coordination sphere effects, and the experimental conditions.
Collapse
Affiliation(s)
- Marcello Gennari
- UMR CNRS 5250, Département de Chimie Moléculaire, Univ. Grenoble Alpes, 38000 Grenoble, France
| | - Carole Duboc
- UMR CNRS 5250, Département de Chimie Moléculaire, Univ. Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
4
|
Sun P, Yang D, Li Y, Wang B, Qu J. A bioinspired thiolate-bridged dinickel complex with a pendant amine: synthesis, structure and electrocatalytic properties. Dalton Trans 2020; 49:2151-2158. [PMID: 31994565 DOI: 10.1039/c9dt04493k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
By employing X(CH2CH2S-)2 (X = S, tpdt; X = O, opdt; X = NPh, npdt) as bridging ligands, four thiolate-bridged dinickel complexes supported by phosphine ligands, [(dppe)Ni(μ-1SSS':2SS-tpdt)Ni(dppe)][PF6]2 (1[PF6]2, dppe = Ph2P(CH2)2PPh2), [(dppe)Ni(μ-1SSN:2SS-npdt)Ni(dppe)][PF6]2 (2[PF6]2) and [(dppe)Ni(t-Cl)(μ-1SSX:2SS-C4H8S2X)Ni(dppe)][PF6] (3[PF6], X = S; 4[PF6], X = O) were facilely obtained by the salt metathesis reaction. These four thiolate-bridged dinickel complexes have all been fully characterized by spectroscopic methods and X-ray crystallography. In 2[PF6]2, elongation of the Ni-N bond distance, possibly caused by steric hindrance, indicates that the pendant nitrogen group shuttles between the two nickel centers in solution, which is evidenced by 31P{1H} NMR spectroscopic results. Furthermore, these thiolate-bridged dinickel complexes have all been proved to be electrocatalysts for proton reduction to hydrogen. Notably, complex 2[PF6]2 featuring a pendant amine group in the secondary coordination sphere exhibits the best catalytic activity at a relatively low overpotential.
Collapse
Affiliation(s)
- Puhua Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | | | | | | | | |
Collapse
|
5
|
Su L, Yang D, Wang B, Qu J. Catalytic disproportionation of hydrazine by thiolate-bridged diiron complexes. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
6
|
You Q, Yang D, Xu S, Wang B, Qu J. Synthesis, characterization and structure of thiolate-bridged diruthenium and iron-ruthenium complexes with isocyanide ligands. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Basu D, Bailey TS, Lalaoui N, Richers CP, Woods TJ, Rauchfuss TB, Arrigoni F, Zampella G. Synthetic Designs and Structural Investigations of Biomimetic Ni-Fe Thiolates. Inorg Chem 2019; 58:2430-2443. [PMID: 30707014 DOI: 10.1021/acs.inorgchem.8b02991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Described are the syntheses of several Ni(μ-SR)2Fe complexes, including hydride derivatives, in a search for improved models for the active site of [NiFe]-hydrogenases. The nickel(II) precursors include (i) nickel with tripodal ligands: Ni(PS3)- and Ni(NS3)- (PS33- = tris(phenyl-2-thiolato)phosphine, NS33- = tris(benzyl-2-thiolato)amine), (ii) traditional diphosphine-dithiolates, including chiral diphosphine R,R-DIPAMP, (iii) cationic Ni(phosphine-imine/amine) complexes, and (iv) organonickel precursors Ni( o-tolyl)Cl(tmeda) and Ni(C6F5)2. The following new nickel precursor complexes were characterized: PPh4[Ni(NS3)] and the dimeric imino/amino-phosphine complexes [NiCl2(PCH═NAn)]2 and [NiCl2(PCH2NHAn)]2 (P = Ph2PC6H4-2-). The iron(II) reagents include [CpFe(CO)2(thf)]BF4, [Cp*Fe(CO)(MeCN)2]BF4, FeI2(CO)4, FeCl2(diphos)(CO)2, and Fe(pdt)(CO)2(diphos) (diphos = chelating diphosphines). Reactions of the nickel and iron complexes gave the following new Ni-Fe compounds: Cp*Fe(CO)Ni(NS3), [Cp(CO)Fe(μ-pdt)Ni(dppbz)]BF4, [( R,R-DIPAMP)Ni(μ-pdt)(H)Fe(CO)3]BArF4, [(PCH═NAn)Ni(μ-pdt)(Cl)Fe(dppbz)(CO)]BF4, [(PCH2NHAn)Ni(μ-pdt)(Cl)Fe(dppbz)(CO)]BF4, [(PCH═NAn)Ni(μ-pdt)(H)Fe(dppbz)(CO)]BF4, [(dppv)(CO)Fe(μ-pdt)]2Ni, {H[(dppv)(CO)Fe(μ-pdt)]2Ni]}BF4, and (C6F5)2Ni(μ-pdt)Fe(CO)2(dppv) (DIPAMP = (CH2P(C6H4-2-OMe)2)2; BArF4- = [B(C6H3-3,5-(CF3)2]4-)) Within the context of Ni-(SR)2-Fe complexes, these new complexes feature new microenvironments for the nickel center: tetrahedral Ni, chirality, imine, and amine coligands, and Ni-C bonds. In the case of {H[(dppv)(CO)Fe(μ-pdt)]2Ni}+, four low-energy isomers are separated by ≤3 kcal/mol, one of which features a biomimetic HNi(SR)4 site, as supported by density functional theory calculations.
Collapse
Affiliation(s)
- Debashis Basu
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - T Spencer Bailey
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Noémie Lalaoui
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Casseday P Richers
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Toby J Woods
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Thomas B Rauchfuss
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 20126 Milan , Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 20126 Milan , Italy
| |
Collapse
|
8
|
Wu H, Li J, Yang D, Tong P, Zhao J, Wang B, Qu J. CO2 fixation and transformation on a thiolate-bridged dicobalt scaffold under oxidising conditions. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00423h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CO2 fixation and conversion promoted by a thiolate-bridged dicobalt complex in the presence of an oxidant.
Collapse
Affiliation(s)
- Hui Wu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Jianzhe Li
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Peng Tong
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Jinfeng Zhao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P. R. China
- Key Laboratory for Advanced Materials
| |
Collapse
|
9
|
Zhang Y, Yang D, Li Y, Zhao X, Wang B, Qu J. Biomimetic catalytic oxidative coupling of thiols using thiolate-bridged dinuclear metal complexes containing iron in water under mild conditions. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01667h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green approach to disulfides via aerobic oxidative coupling of thiols was developed with a thiolate-bridged heteronuclear complex in water.
Collapse
Affiliation(s)
- Yahui Zhang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Ying Li
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Xiangyu Zhao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
- Key Laboratory for Advanced Materials
| |
Collapse
|
10
|
Su L, Yang D, Zhang Y, Wang B, Qu J. Methylene insertion into an Fe 2S 2 cluster: formation of a thiolate-bridged diiron complex containing an Fe-CH 2-S moiety. Chem Commun (Camb) 2018; 54:13119-13122. [PMID: 30398494 DOI: 10.1039/c8cc07418f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Reduction of a thiolate-bridged FeIIFeIII complex leads to the cleavage of an Fe-S bond by the insertion of the methylene unit from CH2Cl2 to give a neutral FeIIFeIII complex with a novel Fe-CH2-S fragment. The structural and electrochemical differences of the alkylated and the non-alkylated Fe2S2 complexes are also examined.
Collapse
Affiliation(s)
- Linan Su
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China.
| | | | | | | | | |
Collapse
|
11
|
Zhao X, Yang D, Zhang Y, Wang B, Qu J. Terminal alkyne insertion into a thiolate-bridged dirhodium hydride complex derived from heterolytic cleavage of H 2. Chem Commun (Camb) 2018; 54:11112-11115. [PMID: 30155542 DOI: 10.1039/c8cc05738a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thiolate-bridged dirhodium and diiridium complexes can facilely realize heterolytic cleavage of H2 across the metal-sulfur bond to generate the corresponding hydride bridged complexes. Furthermore, terminal alkynes can insert the Rh-H-Rh fragment to afford σ:π alkenyl bridged complexes and then convert to the corresponding alkenes in the presence of a reductant and an acid.
Collapse
Affiliation(s)
- Xiangyu Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China.
| | | | | | | | | |
Collapse
|
12
|
Zhao X, Yang D, Zhang Y, Wang B, Qu J. Highly β( Z)-Selective Hydrosilylation of Terminal Alkynes Catalyzed by Thiolate-Bridged Dirhodium Complexes. Org Lett 2018; 20:5357-5361. [PMID: 30152700 DOI: 10.1021/acs.orglett.8b02267] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A series of novel monothiolate-bridged dirhodium complexes, [Cp*Rh(μ-SR)(μ-Cl)2RhCp*][BF4] {Cp* = η5-C5Me5, R = tertiary butyl ( tBu), 1a; R = ferrocenyl (Fc), 1b; R = adamantyl (Ad), 1c} were designed and successfully synthesized, which can smoothly facilitate highly regioselective and stereoselective hydrosilylation of terminal alkynes to afford β( Z) vinylsilanes with good functional group compatibility. Furthermore, the hydride bridged dirhodium complex [Cp*Rh(μ-S tBu)(μ-Cl)(μ-H)RhCp*][BF4] (5) as a potential intermediate was obtained by the reaction of 1a with excess HSiEt3.
Collapse
Affiliation(s)
- Xiangyu Zhao
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , People's Republic of China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , People's Republic of China
| | - Yahui Zhang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , People's Republic of China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , People's Republic of China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , People's Republic of China.,Key Laboratory for Advanced Materials , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| |
Collapse
|
13
|
Zhang Y, Yang D, Li Y, Zhao X, Wang B, Qu J. Sulfur-Centered Reactivity of Oxidized Iron-Thiolate Complex toward Unsaturated Hydrocarbon Addition. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yahui Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ying Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiangyu Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
- Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
14
|
Ghosh P, Quiroz M, Wang N, Bhuvanesh N, Darensbourg MY. Complexes of MN 2S 2·Fe(η 5-C 5R 5)(CO) as platform for exploring cooperative heterobimetallic effects in HER electrocatalysis. Dalton Trans 2018; 46:5617-5624. [PMID: 28174781 DOI: 10.1039/c6dt04666e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The control of aggregation at sulfur by metallodithiolates (MN2S2) has made them prime candidates as building blocks for the synthesis of biomimetics of various bimetallic enzyme active sites, with reactivity consequences implicating redox control by both metal centers. Recent studies of MN2S2 (M = Ni2+, Fe(NO)2+) bound to [(η5-C5H5)Fe(CO)]+ as electrocatalysts for proton reduction, the hydrogen evolution reaction, demonstrated reduction-induced hemi-lability of the bridging cis-dithiolates as a key step in the electrochemical proton reduction process (Ding, et al., J. Am. Chem. Soc., 2016, 138, 12920-12927). The MN2S2·Fe(η5-C5R5)(CO) platform offers numerous possibilities for tuning the electronic character of the M(μ-S2)Fe core. As well as modifying M within the metallodithiolate ligand, replacing H by CH3 at the η5-C5R5 moiety increases the electron density at the Fe center, which might facilitate the reductive Fe-S bond cleavage. Although release of a free thiolate in these hemi-labile ligands creates a needed internal pendant base, this benefit might be countered by the increase in over-potential for addition of the first electron. Herein we report the preparation and characterization of four bimetallic aggregates with the (η5-C5R5)Fe(CO) (R = H, CH3; Fe' or Fe*', respectively) or the dicarbonyl (η5-C5R5)Fe(CO)2 scaffold (R = H, CH3; Fe'' or Fe*'', respectively) bound to redox active MN2S2 ligands (M = Ni2+, Co(NO)2+; N2S2 = bismercaptoethane diazacycloheptane) Co-Fe*', Ni-Fe*', Co-Fe' and Co-Fe*'' complexes. The bidentate complexes were found to be electrocatalysts for proton reduction, although at high over-potential, especially for the derivatives of the electron-rich (η5-C5(CH3)5)Fe(CO)+. The turnover (TON) and turnover frequencies (TOF) were determined and found to be comparable to the previously reported MN2S2·Fe(η5-C5H5)(CO)+ analogues.
Collapse
Affiliation(s)
- Pokhraj Ghosh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, USA.
| | | | | | | | | |
Collapse
|
15
|
Ghosh P, Ding S, Chupik RB, Quiroz M, Hsieh CH, Bhuvanesh N, Hall MB, Darensbourg MY. A matrix of heterobimetallic complexes for interrogation of hydrogen evolution reaction electrocatalysts. Chem Sci 2017; 8:8291-8300. [PMID: 29619175 PMCID: PMC5858031 DOI: 10.1039/c7sc03378h] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022] Open
Abstract
Experimental and computational studies address key questions in a structure-function analysis of bioinspired electrocatalysts for the HER. Combinations of NiN2S2 or [(NO)Fe]N2S2 as donors to (η5-C5H5)Fe(CO)+ or [Fe(NO)2]+/0 generate a series of four bimetallics, gradually "softened" by increasing nitrosylation, from 0 to 3, by the non-innocent NO ligands. The nitrosylated NiFe complexes are isolated and structurally characterized in two redox levels, demonstrating required features of electrocatalysis. Computational modeling of experimental structures and likely transient intermediates that connect the electrochemical events find roles for electron delocalization by NO, as well as Fe-S bond dissociation that produce a terminal thiolate as pendant base well positioned to facilitate proton uptake and transfer. Dihydrogen formation is via proton/hydride coupling by internal S-H+···-H-Fe units of the "harder" bimetallic arrangements with more localized electron density, while softer units convert H-···H-via reductive elimination from two Fe-H deriving from the highly delocalized, doubly reduced [Fe2(NO)3]- derivative. Computational studies also account for the inactivity of a Ni2Fe complex resulting from entanglement of added H+ in a pinched -S δ-···H+··· δ-S- arrangement.
Collapse
Affiliation(s)
- Pokhraj Ghosh
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Shengda Ding
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Rachel B Chupik
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Manuel Quiroz
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Chung-Hung Hsieh
- Department of Chemistry , Tamkang University , New Taipei City , Taiwan 25157
| | - Nattami Bhuvanesh
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Michael B Hall
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | | |
Collapse
|
16
|
Zhang Y, Mei T, Yang D, Zhang Y, Wang B, Qu J. Proton mediated switching of the coordination states of the tethered N-atom in iron complex featuring a pendent amine functionalized Cp* ligand. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Zhang Y, Mei T, Yang D, Zhang Y, Wang B, Qu J. Synthesis and reactivity of thiolate-bridged multi-iron complexes supported by cyclic (alkyl)(amino)carbene. Dalton Trans 2017; 46:15888-15896. [PMID: 29116275 DOI: 10.1039/c7dt03353b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The combined utilization of Me2-cAAC (Me2-cAAC = :C(CH2)(CMe2)2N-2,6-iPr2C6H3) and thiolates as supporting ligands enables the access of unprecedented carbene coordinated thiolate-bridged diiron(ii) complexes [(Me2-cAAC)Fe(μ-SR)(Br)]2 (R = Me, 3; R = Et, 4). The coordination environment of each tetrahedral iron(ii) center in complexes 3 and 4 is composed of one terminal bromide atom, one carbene carbon atom and two thiolate sulfur atoms, which is similar to the carbide-containing sulfur-rich environment of iron centers in the belt region of the FeMo-cofactor. Interestingly, when NaSCPh3 was chosen as the thiolate ligand, C-S bond homolysis occurred to form a rare [3 : 1] site-differentiated cubane-type cluster [(Me2-cAAC)Fe4S4(Br)3][Me2-cAACH] (5). Furthermore, complexes 3 and 4 exhibit good exchange reactivity toward the azide anion to give novel thiolate-bridged diiron complexes with two azido ligands in a trans arrangement.
Collapse
Affiliation(s)
- Yanpeng Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | | | | | | | | | | |
Collapse
|
18
|
Catalytic N−N bond cleavage of hydrazine by thiolate-bridged iron-ruthenium heteronuclear complexes. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Zhang Y, Yang D, Li Y, Wang B, Zhao X, Qu J. Synthesis and characterization of a family of thioether-dithiolate-bridged heteronuclear iron complexes. Dalton Trans 2017; 46:7030-7038. [PMID: 28517006 DOI: 10.1039/c7dt00719a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The thioether-dithiolate-bridged heterotrinuclear complexes [Cp*Fe(μ-1k3SSS':2k2SS-tpdt)M(μ-2k2SS:3k3SSS'-tpdt)FeCp*][PF6]2 (Cp* = η5-C5Me5; tpdt = S(CH2CH2S)2; 2, M = Co; 3, M = Ni; 4, M = Pd) have been prepared by a reaction of [Cp*Fe(η3-tpdt)] (1) with complexes CoCl2, NiCl2(PPh3)2, and PdCl2(PPh3)2, respectively. Similarly, treatment of complex 1 with CuCl(PPh3) or AgPF6 afforded two heterotrinuclear complexes, [Cp*Fe(μ-1k3SSS':2k2SS-tpdt)M(μ-2k2SS:3k3SSS'-tpdt)FeCp*][PF6] (5, M = Cu; 6, M = Ag), while reaction of 1 with the complex AuCl(PPh3) gave a heterobinuclear complex, [Cp*Fe(μ-1k3SSS':2k1S-tpdt)Au(PPh3)][PF6] (7). These complexes have been spectroscopically and crystallographically characterized. An X-ray diffraction analysis showed that complexes 2, 3, 5, and 6 feature a heterometal center binding four sulfur atoms of two tpdt ligands with a cis orientation. However, in the Pd-containing complex 4, two tpdt ligands are arranged in a trans configuration. The μeff data and EPR results indicate that complexes 2, 4, 5, 6, and 7 are paramagnetic and only complex 3 is diamagnetic. Electrochemical experiments on these heteronuclear clusters were performed at room temperature. Discrepancy of the redox couples in the CV plots of these complexes indicates different one-electron transfer processes.
Collapse
Affiliation(s)
- Yahui Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China
| | | | | | | | | | | |
Collapse
|
20
|
Ji X, Yang D, Tong P, Li J, Wang B, Qu J. C–H Activation of Cp* Ligand Coordinated to Ruthenium Center: Synthesis and Reactivity of a Thiolate-Bridged Diruthenium Complex Featuring Fulvene-like Cp* Ligand. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoxiao Ji
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Dawei Yang
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Peng Tong
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Jianzhe Li
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Baomin Wang
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Jingping Qu
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- Key
Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
21
|
Ji X, Tong P, Yang D, Wang B, Zhao J, Li Y, Qu J. Synthesis, structural characterization and conversion of dinuclear iron-sulfur clusters containing the disulfide ligand: [Cp*Fe(μ-η 2:η 2-bdt)(cis-μ-η 1:η 1-S 2)FeCp*], [Cp*Fe(μ-S(C 6H 4S 2))(cis-μ-η 1:η 1-S 2)FeCp*], and [{Cp*Fe(bdt)} 2(trans-μ-η 1:η 1-S 2)]. Dalton Trans 2017; 46:3820-3824. [PMID: 28265627 DOI: 10.1039/c7dt00450h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The treatment of [Cp*Fe(μ-η2:η4-bdt)FeCp*] (1, Cp* = η5-C5Me5, bdt = benzene-1,2-dithiolate) with 1/4 equiv. of elemental sulfur (S8) gave a dinuclear iron-sulfur cluster [Cp*Fe(μ-η2:η2-bdt)(cis-μ-η1:η1-S2)FeCp*] (2), which contains a cis-1,2-disulfide ligand. When complex 2 further interacted with 1/8 equiv. of S8, another sulfur atom inserted into an Fe-S bond to give a rare product [Cp*Fe(μ-S(C6H4S2))(cis-μ-η1:η1-S2)FeCp*] (3). Unexpectedly, a trans-1,2 disulfide-bridged diiron complex [{Cp*Fe(bdt)}2(trans-μ-η1:η1-S2)] (4) was isolated from the reaction of complex 1 with 1/2 equiv. of S8, which represents a structural isomer of [2Fe-2S] ferredoxin-type clusters. In addition, cis-1,2-disulfide-bridged complex 3 can slowly convert into trans-1,2-disulfide-bridged complex 4 and the complex [Cp*Fe(μ-η2:η2-S2)(cis-μ-η1:η1-S2)FeCp*] (5) by self-assembly reaction at ambient temperature, which is evidenced by time-dependent 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Xiaoxiao Ji
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | - Peng Tong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | - Jinfeng Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China. and Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P.R. China
| |
Collapse
|
22
|
Lunsford AM, Goldstein KF, Cohan MA, Denny JA, Bhuvanesh N, Ding S, Hall MB, Darensbourg MY. Comparisons of MN2S2vs. bipyridine as redox-active ligands to manganese and rhenium in (L–L)M′(CO)3Cl complexes. Dalton Trans 2017; 46:5175-5182. [DOI: 10.1039/c7dt00600d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Electronic communication was established for a heterobimetallic complex which upon reduction at one metal center modulates ligand loss and subsequent electron uptake at the second metal.
Collapse
Affiliation(s)
| | | | | | - Jason A. Denny
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | | | - Shengda Ding
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Michael B. Hall
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | | |
Collapse
|
23
|
Chu X, Yu X, Raje S, Angamuthu R, Ma J, Tung CH, Wang W. Synthetic [NiFe] models with a fluxional CO ligand. Dalton Trans 2017; 46:13681-13685. [DOI: 10.1039/c7dt02892j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A [NiFe] complex [(dppe)Ni(pdt)FeCp*(CO)]BF4 was characterized as two isomers, and their interconversions were established by thermal process and electrochemistry.
Collapse
Affiliation(s)
- Xiaoxiao Chu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Xin Yu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Sakthi Raje
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur
- India
| | - Raja Angamuthu
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur
- India
| | - Jianping Ma
- College of Chemistry
- Chemical Engineering and Materials Science Shandong Normal University
- Jinan 250014
- PR China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| |
Collapse
|
24
|
Ding S, Ghosh P, Lunsford AM, Wang N, Bhuvanesh N, Hall MB, Darensbourg MY. Hemilabile Bridging Thiolates as Proton Shuttles in Bioinspired H2 Production Electrocatalysts. J Am Chem Soc 2016; 138:12920-12927. [DOI: 10.1021/jacs.6b06461] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shengda Ding
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Pokhraj Ghosh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Allen M. Lunsford
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Ning Wang
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Marcetta Y. Darensbourg
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| |
Collapse
|
25
|
Sun P, Yang D, Li Y, Zhang Y, Su L, Wang B, Qu J. Thiolate-Bridged Nickel–Iron and Nickel–Ruthenium Complexes Relevant to the CO-Inhibited State of [NiFe]-Hydrogenase. Organometallics 2016. [DOI: 10.1021/acs.organomet.5b01035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Puhua Sun
- State Key Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Dawei Yang
- State Key Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Ying Li
- State Key Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Yahui Zhang
- State Key Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Linan Su
- State Key Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Baomin Wang
- State Key Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Jingping Qu
- State Key Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| |
Collapse
|
26
|
Tong P, Xie W, Yang D, Wang B, Ji X, Li J, Qu J. Structural characterization and proton reduction electrocatalysis of thiolate-bridged bimetallic (CoCo and CoFe) complexes. Dalton Trans 2016; 45:18559-18565. [DOI: 10.1039/c6dt03275c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using an assembly method, dinuclear CoCo and CoFe complexes supported by a bdt ligand, [Cp*Co(μ–η2:η2-bdt)(μ-I)CoCp*][PF6] (1[PF6], Cp* = η5-C5Me5, bdt = benzene-1,2-dithiolate), and [Cp*Co(μ–η2:η4-bdt)FeCp′][PF6] (3[PF6], Cp′ = η5-C5Me4H) were synthesized in high yields.
Collapse
Affiliation(s)
- Peng Tong
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian
- P.R. China
| | - Wenjie Xie
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian
- P.R. China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian
- P.R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian
- P.R. China
| | - Xiaoxiao Ji
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian
- P.R. China
| | - Jianzhe Li
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian
- P.R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian
- P.R. China
| |
Collapse
|
27
|
Yang D, Li Y, Wang B, Zhao X, Su L, Chen S, Tong P, Luo Y, Qu J. Synthesis and Electrocatalytic Property of Diiron Hydride Complexes Derived from a Thiolate-Bridged Diiron Complex. Inorg Chem 2015; 54:10243-9. [DOI: 10.1021/acs.inorgchem.5b01508] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dawei Yang
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Yang Li
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Xiangyu Zhao
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Linan Su
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Si Chen
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Peng Tong
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|