1
|
Radhakrishna L, Sheokand S, Mondal D, Balakrishna MS. Structural Diversity and Rare η 1 Cu-C Interactions in Cu I Complexes of 1,2,3-Triazole-Functionalized Bisphosphines. Inorg Chem 2024; 63:9919-9930. [PMID: 38755737 DOI: 10.1021/acs.inorgchem.4c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
This manuscript describes the synthesis of copper complexes of 1,2,3-triazolyl-phosphines: o-Ph2P(C6H4){1,2,3-N3CC6H5)C(PPh2)} (L1), (C6H5){1,2,3-N3C(C6H4(o-PPh2))-C(PPh2)} (L2), 3-Ph2P(C5H3N){1,2,3-N3C(C6H5)C(PPh2)} (L3), o-Ph2P(C6H4){1,2,3-N3C(C5H5N)C(PPh2)} (L4), and {(3,5-Ph2PC6H4-o)21,2,3-N3CCH} (L5). The reactions of L1-L3 with CuI salts afforded dimeric complexes having the general formula [Cu2(μ -X)2L2] (L = L1, X = Cl, Br and I: 1 - 3; L= L2, X = Cl, Br and I: 4- 6; L = L3; X = Cl, Br, and I: 7-9). The reaction of L4 with CuI in a 1:2 molar ratio afforded 1D-coordination polymer [{(CuI)2{o-Ph2P(C6H4){1,2,3-N3C(C5H5N)C(PPh2)}-μ-((k1-N)(k2-P,P))}}]n (10). The reaction of L5 with cuprous halides (CuX) (X = Br, I) yielded mononuclear complexes [CuX{(3,5-Ph2PC6H4-o)21,2,3-N3CCH}-κ2P,P] (X = Br, 12; I, 13). Crystal structures of complexes 12 and 13 showed close interactions between CuI and the triazole C7 carbon. These relatively short Cu···C7 separations may be due to the η1-C interaction (dπ-pπ bond) between the triazolic carbon atom (via pz orbital) and CuI or three-centered two-electron interaction between CuI and the triazolic C-H bond. The existence of the Cu···C interaction was further evinced by the QTAIM analysis in compounds 12 and 13.
Collapse
Affiliation(s)
- Latchupatula Radhakrishna
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Powai 400076, India
| | - Sonu Sheokand
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Powai 400076, India
| | - Dipanjan Mondal
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Powai 400076, India
| | - Maravanji S Balakrishna
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Powai 400076, India
| |
Collapse
|
2
|
Molecular Tetris by sequence-specific stacking of hydrogen bonding molecular clips. Commun Chem 2022; 5:180. [PMID: 36697760 PMCID: PMC9814962 DOI: 10.1038/s42004-022-00802-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
A face-to-face stacking of aromatic rings is an effective non-covalent strategy to build functional architectures, as elegantly exemplified with protein folding and polynucleotide assembly. However, weak, non-directional, and context-sensitive van der Waals forces pose a significant challenge if one wishes to construct well-organized π-stacks outside the confines of the biological matrix. To meet this design challenge, we have devised a rigid polycyclic template to create a non-collapsible void between two parallel oriented π-faces. In solution, these shape-persistent aromatic clips self-dimerize to form quadruple π-stacks, the thermodynamic stability of which is enhanced by self-complementary N-H···N hydrogen bonds, and finely regulated by the regioisomerism of the π-canopy unit. With assistance from sufficient electrostatic polarization of the π-surface and bifurcated hydrogen bonds, a small polyheterocyclic guest can effectively compete against the self-dimerization of the host to afford a triple π-stack inclusion complex. A combination of solution spectroscopic, X-ray crystallographic, and computational studies aided a detailed understanding of this cooperative vs competitive process to afford layered aromatics with extraordinary structural regularity and fidelity.
Collapse
|
3
|
Artem'ev AV, Baranov AY, Berezin AS, Lapteva UA, Samsonenko DG, Bagryanskaya IY. Trigonal Planar Au@Ag
3
Clusters Showing Exceptionally Fast and Efficient Phosphorescence in Violet to Deep‐Blue Region. Chemistry 2022; 28:e202201563. [DOI: 10.1002/chem.202201563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Alexander V. Artem'ev
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Andrey Yu. Baranov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Alexey S. Berezin
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Ulyana A. Lapteva
- Novosibirsk State University 2, Pirogova Str. Novosibirsk 630090 Russian Federation
| | - Denis G. Samsonenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Irina Yu. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9, Acad. Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| |
Collapse
|
4
|
Lapteva UA, Baranov AY, Samsonenko DG, Artem′ev AV. A FOUR-NUCLEAR Ag(I) COMPLEX SUPPORTED BY A N,N′,N″,P-LIGAND: SYNTHESIS, CRYSTAL AND ELECTRONIC STRUCTURE. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622040199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Heteroleptic [Cu(P^P)(N^N)][PF6] Complexes: Effects of Isomer Switching from 2,2′-biquinoline to 1,1′-biisoquinoline. CRYSTALS 2021. [DOI: 10.3390/cryst11020185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The preparation and characterization of [Cu(POP)(biq)][PF6] and [Cu(xantphos)(biq)][PF6] are reported (biq = 1,1′-biisoquinoline, POP = bis(2-(diphenylphosphanyl)phenyl)ether, and xantphos = (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane). The single crystal structure of [Cu(POP)(biq)][PF6] 0.5Et2O was determined and compared to that in three salts of [Cu(POP)(bq)]+ in which bq = 2,2′-biquinoline. The P–C–P angle is 114.456(19)o in [Cu(POP)(biq)]+ compared to a range of 118.29(3)–119.60(3)o [Cu(POP)(bq)]+. There is a change from an intra-POP PPh2-phenyl/(C6H4)2O-arene π-stacking in [Cu(POP)(biq)]+ to a π-stacking contact between the POP and bq ligands in [Cu(POP)(bq)]+. In solution and at ambient temperatures, the [Cu(POP)(biq)][PF6]+ and [Cu(xantphos)(biq)]+ cations undergo several concurrent dynamic processes, as evidenced in their multinuclear NMR spectra. The photophysical and electrochemical behaviors of the heteroleptic copper (I) complexes were investigated, and the effects of changing from bq to biq are described. Short Cu···O distances within the [Cu(POP)(biq)]+ and [Cu(xantphos)(biq)]+ cations may contribute to their very low photoluminescent quantum yields.
Collapse
|
6
|
Raju S, Singh HB, Butcher RJ. Metallophilic interactions: observations of the shortest metallophilicinteractions between closed shell (d10⋯d10, d10⋯d8, d8⋯d8) metal ions [M⋯M′ M = Hg(ii) and Pd(ii) and M′ = Cu(i), Ag(i), Au(i), and Pd(ii)]. Dalton Trans 2020; 49:9099-9117. [PMID: 32573621 DOI: 10.1039/d0dt01008a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The salt metathesis reaction of two equivalents of 8-lithioquinoline (C6H6NLi) with HgBr2 afforded bis(quinoline-8-yl)mercury, [(C6H6N)2Hg].
Collapse
Affiliation(s)
- Saravanan Raju
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Harkesh B. Singh
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Ray J. Butcher
- Department of Chemistry
- Howard University
- Washington DC 20059
- USA
| |
Collapse
|
7
|
Kirste M, Brietzke T, Holdt HJ, Schilde U. The crystal structure of 1,12-diazaperylene, C18H10N2. Z KRIST-NEW CRYST ST 2019. [DOI: 10.1515/ncrs-2019-0385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractC18H10N2, monoclinic, P21/c (no. 14), a = 7.9297(9) Å, b = 11.4021(14) Å, c = 13.3572(15) Å, β = 105.363(8)°, V = 1164.5(2) Å3, Z = 4, Rgt(F) = 0.0325, wRref(F2) = 0.0774, T = 210(2) K.
Collapse
Affiliation(s)
- Matthias Kirste
- Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam, Germany
| | - Thomas Brietzke
- Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam, Germany
| | - Hans-Jürgen Holdt
- Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam, Germany
| | - Uwe Schilde
- Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam, Germany
| |
Collapse
|
8
|
Hutchinson DJ, Hey‐Hawkins E. The Self‐Assembly of Ag
I
‐Containing Heterobimetallic Complexes with a Discriminatory N,P‐Based Heteroditopic Ligand. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Daniel John Hutchinson
- Faculty of Chemistry and Mineralogy Institute of Chemistry Leipzig University 04103 Leipzig Germany
| | - Evamarie Hey‐Hawkins
- Faculty of Chemistry and Mineralogy Institute of Chemistry Leipzig University 04103 Leipzig Germany
| |
Collapse
|
9
|
Das S, Sharma S, Singh HB, Butcher RJ. Metallophilic Mercuraazamacrocycles Derived from Bis{6‐formyl‐(2,3,4‐trimethoxy)phenyl}mercury: Reactivity with d
10
and d
8
Metal Ions. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shikha Das
- Department of Chemistry Indian Institute of Technology Bombay 400076 Mumbai India
| | - Sagar Sharma
- Physical Sciences Division Institute of Advanced Study in Science & Technology Paschim 781035 Boragaon, Guwahati Assam India
| | - Harkesh B. Singh
- Department of Chemistry Indian Institute of Technology Bombay 400076 Mumbai India
| | - Ray J. Butcher
- Department of Chemistry Howard University 20059 Washington DC United States
| |
Collapse
|
10
|
Lescop C. Coordination-Driven Syntheses of Compact Supramolecular Metallacycles toward Extended Metallo-organic Stacked Supramolecular Assemblies. Acc Chem Res 2017; 50:885-894. [PMID: 28263559 DOI: 10.1021/acs.accounts.6b00624] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
One important concept associated with supramolecular chemistry is supramolecular self-assembly, which deals with the way discrete individual components interact via intermolecular interactions in order to build, upon their spontaneous association, high order functional assemblies. The accumulation of these very simple and localized noncovalent interactions (such as H-bonding, dipole-dipole, hydrophobic/hydrophilic, van der Waals, π-π, π-CH, etc.) is ubiquitous in the complexity of natural systems (such as DNA, proteins, membranes, micelles, etc.). It can also be transposed to the directed synthesis of intricate artificial scaffolds, which have anticipated geometries and properties. Among the synthetic strategies based on this concept, coordination-driven supramolecular chemistry uses the robust, reversible, and directional metal-to-ligand coordinative bond to build discrete metallo-supramolecular architectures. Within the last two decades, coordination-driven supramolecular chemistry has proved to be one of the most powerful contemporary synthetic approaches and has provided a significant number of increasingly complex supramolecular assemblies, which have predetermined sizes and geometries. While much focus has been devoted to architectures bearing internal cavities for host-guest chemistry or to generate specific reactivity, particular attention can also be paid to compact supramolecular assemblies given that their specific structures are characterized by peculiar synthetic guiding rules as well as by alternative long-range self-assembling properties. This Account describes how a preassembled CuI bimetallic clip bearing short intermetallic distances can be used as a U-shaped molecular clip to give general and versatile access to a large variety of original compact supramolecular metallacycles. When this CuI precursor is reacted with various cyano-capped ditopic linkers that have increasing lengths and complexities, specific effects guiding the selective and straightforward syntheses of such compact supramolecular objects are highlighted. Whereas a subtle compromise between the length of the ditopic linkers and the steric bulk of the molecular clip appears to be a purely stereogeometric preliminary parameter to master, lateral interlinker interactions (π-π stacking interactions or aurophilic interactions depending on the nature of the internal cores of the linkers) can circumvent these constraints regardless of the length of the linkers and allow the selective formation of new compact supramolecular structures. Generally, such derivatives presented a strong tendency to self-assemble in the solid state due to inter-supramolecule interactions. This approach thus opens a new door toward molecular materials having an attractive solid state structure for potential applications related to charge carrier mobility and luminescence properties. These compact supramolecular assemblies can therefore be considered as original secondary binding units directing the predictive preparation of such extended networks. The on-purpose design of original building blocks bearing specific cores allowed the formation of new compact supramolecular metallacycles such as "U-shaped" π-stacked assemblies or "pseudodouble paracyclophanes". Similarly, the control of the secondary structure of one-dimensional coordination polymers alternating π-stacked compact supramolecular metallacycles was also conducted. The results that are discussed in this Account illustrate how the rational design of both preassembled polymetallic precursors bearing short intermetallic distances and ditopic linkers able to induce cumulative lateral weak interactions can implement the general synthetic guiding rules of coordination driven supramolecular chemistry. This opens perspectives to use such compact supramolecular assemblies as secondary building blocks for the design of long-range organized functional molecular materials that have predictable architectures and targeted properties.
Collapse
Affiliation(s)
- Christophe Lescop
- “Institut des Sciences Chimiques
de Rennes”, UMR 6226-CNRS, Université de Rennes 1, Campus de
Beaulieu, 35042 Cedex Rennes, France
- INSA de Rennes, 20 Avenue des buttes de Coësmes, 35708 Rennes France
| |
Collapse
|
11
|
Stępień M, Gońka E, Żyła M, Sprutta N. Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds: Synthetic Routes, Properties, and Applications. Chem Rev 2016; 117:3479-3716. [PMID: 27258218 DOI: 10.1021/acs.chemrev.6b00076] [Citation(s) in RCA: 908] [Impact Index Per Article: 100.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Two-dimensionally extended, polycyclic heteroaromatic molecules (heterocyclic nanographenes) are a highly versatile class of organic materials, applicable as functional chromophores and organic semiconductors. In this Review, we discuss the rich chemistry of large heteroaromatics, focusing on their synthesis, electronic properties, and applications in materials science. This Review summarizes the historical development and current state of the art in this rapidly expanding field of research, which has become one of the key exploration areas of modern heterocyclic chemistry.
Collapse
Affiliation(s)
- Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski , ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Elżbieta Gońka
- Wydział Chemii, Uniwersytet Wrocławski , ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Marika Żyła
- Wydział Chemii, Uniwersytet Wrocławski , ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Natasza Sprutta
- Wydział Chemii, Uniwersytet Wrocławski , ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|