1
|
Chen Y, Liu W, Huangfu X, Wei J, Yu J, Zhang WX. Direct Synthesis of Phosphoryltriacetates from White Phosphorus via Visible Light Catalysis. Chemistry 2024; 30:e202302289. [PMID: 37927193 DOI: 10.1002/chem.202302289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/01/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
Organophosphorus compounds (OPCs) are widely used in many fields. However, traditional synthetic routes in the industry usually involve multistep and hazardous procedures. Therefore, it's of great significance to construct such compounds in an environmentally-friendly and facile way. Herein, a photoredox catalytic method has been developed to construct novel phosphoryltriacetates. Using fac-Ir(ppy)3 (ppy=2-phenylpyridine) as the photocatalyst and blue LEDs (456 nm) as the light source, white phosphorus can react with α-bromo esters smoothly to generate phosphoryltriacetates in moderate to good yields. This one-step approach features mild reaction conditions and simple operational process without chlorination.
Collapse
Affiliation(s)
- Yu Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xinlei Huangfu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiangxi Yu
- Hunan Provincial Key Laboratory of Functional Metal-Organic Compounds, Key Laboratory of Organometallic New Materials (Hengyang Normal University), College of Hunan Province, Hengyang Normal University, Hengyang, 421008, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Huangfu X, Liu W, Xu H, Wang Z, Wei J, Zhang WX. Photochemical Benzylation of White Phosphorus. Inorg Chem 2023; 62:12009-12017. [PMID: 37458455 DOI: 10.1021/acs.inorgchem.3c01475] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Organophosphorus compounds (OPCs) have wide application in organic synthesis, material sciences, and drug discovery. Generally, the vast majority of phosphorus atoms in OPCs are derived from white phosphorus (P4). However, the large-scale preparation of OPCs mainly proceeds through the multistep and environmentally toxic chlorine route from P4. Herein, we report the direct benzylation of P4 promoted by visible light. The cheap and readily available benzyl bromide was used as a benzylation reagent, and tetrabenzylphosphonium bromide was directly synthesized from P4. In addition, the metallaphotoredox catalysis strategy was applied to functionalize P4 for the first time, which significantly improved the application range of the substituted benzyl bromide.
Collapse
Affiliation(s)
- Xinlei Huangfu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hanhua Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhongzhen Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Abstract
Abstract
This review summarises the experimental and structural knowledge on polycyclic phosphanes, with a focus on bicyclic and tricyclic phosphanes, as they have not only been the most studied in the last 25 years, but also show the greatest diversity in terms of constitutional isomerism and structural motifs. Moreover, only polycyclic phosphanes that have p-block substituents at all free valences are discussed.
Collapse
Affiliation(s)
- Jonas Bresien
- Anorganische Chemie , Institut für Chemie, Universität Rostock , A.-Einstein-Str. 3a , 18059 Rostock , Germany
| | - Kirill Faust
- Institut für Katalyse, Johannes Kepler Universität Linz , Altenberger Straße 69 , 4040 Linz , Austria
| | - Axel Schulz
- Anorganische Chemie , Institut für Chemie, Universität Rostock , A.-Einstein-Str. 3a , 18059 Rostock , Germany
- Materialdesign , Leibniz-Institut für Katalyse an der Universität Rostock , A.-Einstein-Str. 29a , 18059 Rostock , Germany
| |
Collapse
|
4
|
Luo G, Du S, Wang P, Liu F, Zhang WX, Luo Y. Fragmentation Mechanism of White Phosphorus: A Theoretical Insight into Multiple Cleavage/Formation of P-P and P-C Bonds. Chemistry 2020; 26:13282-13287. [PMID: 32652596 DOI: 10.1002/chem.202002338] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Indexed: 01/06/2023]
Abstract
Molecular-level understanding of metal-mediated white phosphorus (P4 ) activation is meaningful but challenging because of its direct relevance to the conversion of P4 into useful organophosphorus compounds as well as the complicated and unforeseeable cleavage process of P-P bonds. The related study, however, has still rarely been achieved to date. Here, a theoretical insight into the step-by-step process of three P-P bond cleavage/four P-C bond formation for [P3 +P1 ]-fragmentation of P4 mediated by lutetacyclopentadienes is reported. The unique charge-separated intermediate and the intermolecular cooperation between two lutetacyclopentadienes play a vital role in the subsequent P-P/P-C bond breaking/forming. It is found that, although the first P-C formation is involved in the assembly of the cyclo-P3 [R4 C4 P3 ]- unit, the construction of the aromatic five-membered P1 heterocycle [R4 C4 P]- is completed prior to the cyclo-P3 formation. The reaction mechanism has been carefully elucidated by analyses of the geometric structure, frontier molecular orbitals, bond index, and natural charge, which greatly broaden and enrich the general knowledge of the direct functionalization of P4 .
Collapse
Affiliation(s)
- Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China.,State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Shanshan Du
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of, Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P.R. China
| | - Pan Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Fan Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of, Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P.R. China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| |
Collapse
|
5
|
Weis P, Röhner DC, Prediger R, Butschke B, Scherer H, Weber S, Krossing I. First experimental evidence for the elusive tetrahedral cations [EP 3] + (E = S, Se, Te) in the condensed phase. Chem Sci 2019; 10:10779-10788. [PMID: 32055385 PMCID: PMC7006506 DOI: 10.1039/c9sc03915e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/06/2019] [Indexed: 11/21/2022] Open
Abstract
Condensed phase access to the unprecedented tetrahedral cations [EP3]+ (E = S, Se, Te) was achieved through the reaction of ECl3[WCA] with white phosphorus ([WCA]- = [Al(ORF)4]- and [F(Al(ORF)3)2]-; -RF = -C(CF3)3). Previously, [EP3]+ was only known from gas phase MS investigations. By contrast, the reaction of ECl3[A] with the known P3 3- synthon Na[Nb(ODipp)3(P3)] (enabling AsP3 synthesis), led to formation of P4. The cations [EP3]+ were characterized by multinuclear NMR spectroscopy in combination with high-level quantum chemical calculations. Their bonding situation is described with several approaches including Atoms in Molecules and Natural Bond Orbital analysis. The first series of well-soluble salts ECl3[WCA] was synthesized and fully characterized as starting materials for the studies on this elusive class of [EP3]+ cations. Yet, with high [ECl3]+ fluoride ion affinity values between 775 (S), 803 (Se) and 844 (Te) kJ mol-1, well exceeding typical phosphenium ions, these well-soluble ECl3[WCA] salts could be relevant in view of the renewed interest in strong (also cationic) Lewis acids.
Collapse
Affiliation(s)
- Philippe Weis
- Institut für Anorganische und Analytische Chemie , Freiburger Materialforschungszentrum (FMF) , Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany .
| | - David Christopher Röhner
- Institut für Anorganische und Analytische Chemie , Freiburger Materialforschungszentrum (FMF) , Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany .
| | - Richard Prediger
- Institut für Anorganische und Analytische Chemie , Freiburger Materialforschungszentrum (FMF) , Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany .
| | - Burkhard Butschke
- Institut für Anorganische und Analytische Chemie , Freiburger Materialforschungszentrum (FMF) , Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany .
| | - Harald Scherer
- Institut für Anorganische und Analytische Chemie , Freiburger Materialforschungszentrum (FMF) , Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany .
| | - Stefan Weber
- Institut für Physikalische Chemie , Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie , Freiburger Materialforschungszentrum (FMF) , Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany .
| |
Collapse
|
6
|
Mecke E, Frank W. Crystal structure of 1,3-di- tert-butyl-2-chloro-1,3,2-di-aza-phospho-rinane - a saturated six-membered phospho-rus nitro-gen heterocycle with a partially flattened chair conformation and a long P III-Cl bond. Acta Crystallogr E Crystallogr Commun 2019; 75:552-556. [PMID: 31110784 PMCID: PMC6505585 DOI: 10.1107/s2056989019004195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/28/2019] [Indexed: 11/10/2022]
Abstract
Colourless blocks of 1,3-di-tert-butyl-2-chloro-1,3,2-di-aza-phospho-rinane, C11H24ClN2P (1), were obtained by sublimation in vacuo slightly above room temperature. The asymmetric unit of the monoclinic crystal structure of the six-membered N-heterocyclic compound is defined by one mol-ecule in a general position. The six-membered ring of the mol-ecule adopts a cyclo-hexane-like chair conformation; the chair at one side is to some extent flattened as a result of the approximately trigonal-planar coordination of both nitro-gen atoms. In detail, this modified chair conformation is characterized by an angle of 53.07 (15)° between the plane defined by the three carbon atoms and the best plane of the two nitro-gen atoms and the two carbon atoms bound to them, and an angle of 27.96 (7)° between the latter plane and the plane defined by the nitro-gen and phospho-rus atoms. The tert-butyl groups are oriented equatorially and the chloro substituent is oriented axially. The P-Cl bond length of 2.2869 (6) Å is substanti-ally longer than the P-Cl single-bond length in PCl3 [2.034 Å; Galy & Enjalbert (1982 ▸). J. Solid State Chem. 44, 1-23]. Inspection of the inter-molecular distances gives no evidence for inter-actions stronger than van der Waals forces. The closest contact is between the Cl atom and a methyl-ene group of a neighbouring mol-ecule with a Cl⋯C distance of 3.7134 (18) Å, excluding a significant influence on the P-Cl bonding.
Collapse
Affiliation(s)
- Erik Mecke
- Institut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Walter Frank
- Institut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Chu T, Nikonov GI. Oxidative Addition and Reductive Elimination at Main-Group Element Centers. Chem Rev 2018; 118:3608-3680. [DOI: 10.1021/acs.chemrev.7b00572] [Citation(s) in RCA: 342] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Terry Chu
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Georgii I. Nikonov
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
8
|
Du S, Yin J, Chi Y, Xu L, Zhang WX. Dual Functionalization of White Phosphorus: Formation, Characterization, and Reactivity of Rare-Earth-Metal Cyclo
-P3
Complexes. Angew Chem Int Ed Engl 2017; 56:15886-15890. [DOI: 10.1002/anie.201708897] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/04/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Shanshan Du
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; College of Chemistry; Peking University; Beijing 100871 China
| | - Jianhao Yin
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; College of Chemistry; Peking University; Beijing 100871 China
| | - Yue Chi
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; College of Chemistry; Peking University; Beijing 100871 China
| | - Ling Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; College of Chemistry; Peking University; Beijing 100871 China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; College of Chemistry; Peking University; Beijing 100871 China
- State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| |
Collapse
|
9
|
Du S, Yin J, Chi Y, Xu L, Zhang WX. Dual Functionalization of White Phosphorus: Formation, Characterization, and Reactivity of Rare-Earth-Metal Cyclo
-P3
Complexes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shanshan Du
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; College of Chemistry; Peking University; Beijing 100871 China
| | - Jianhao Yin
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; College of Chemistry; Peking University; Beijing 100871 China
| | - Yue Chi
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; College of Chemistry; Peking University; Beijing 100871 China
| | - Ling Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; College of Chemistry; Peking University; Beijing 100871 China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; College of Chemistry; Peking University; Beijing 100871 China
- State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| |
Collapse
|
10
|
Graham CME, Macdonald CLB, Power PP, Brown ZD, Ragogna PJ. Transition Metal Functionalization of P4 Using a Diarylgermylene Anchor. Inorg Chem 2017; 56:9111-9119. [DOI: 10.1021/acs.inorgchem.7b01138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cameron M. E. Graham
- Department of Chemistry
and the Centre for Advanced Materials and Biomaterials Research, Western University, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Charles L. B. Macdonald
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Philip P. Power
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Zachary D. Brown
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Paul J. Ragogna
- Department of Chemistry
and the Centre for Advanced Materials and Biomaterials Research, Western University, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| |
Collapse
|
11
|
Schwamm RJ, Coles MP, Fitchett CM. Neutral and cationic bismuth compounds supported by bis(amidodimethyl)disiloxane ligands. Dalton Trans 2017; 46:4066-4074. [PMID: 28272637 DOI: 10.1039/c7dt00230k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bis(amidodimethyl)disiloxane ligands derived from O{SiMe2N(H)R}2 (abbreviated as (NONR)H2) are a stable support for neutral and cationic bismuth compounds. Attempts to extend the series Bi(NONR)Cl (R = Ar = 2,6-iPr2C6H3; R = tBu) to include compounds where R = Ar' = 2,6-Me2C6H3 were complicated by concomitant formation of the bimetallic compound {Bi(NONAr')}2(μ-NONAr'). Compounds containing [Bi(NONR)]+ cations were obtained from reactions with group 13 chlorides MCl3 (M = Al, Ga). X-ray crystallographic analysis showed intermolecular interactions with the [MnCl(3n+1)] anion.
Collapse
Affiliation(s)
- R J Schwamm
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| | - M P Coles
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| | - C M Fitchett
- Department of Chemistry, University of Canterbury, Christchurch, 8041, New Zealand
| |
Collapse
|