1
|
Ebadi Amooghin A, Sanaeepur H, Luque R, Garcia H, Chen B. Fluorinated metal-organic frameworks for gas separation. Chem Soc Rev 2022; 51:7427-7508. [PMID: 35920324 DOI: 10.1039/d2cs00442a] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorinated metal-organic frameworks (F-MOFs) as fast-growing porous materials have revolutionized the field of gas separation due to their tunable pore apertures, appealing chemical features, and excellent stability. A deep understanding of their structure-performance relationships is critical for the synthesis and development of new F-MOFs. This critical review has focused on several strategies for the precise design and synthesis of new F-MOFs with structures tuned for specific gas separation purposes. First, the basic principles and concepts of F-MOFs as well as their structure, synthesis and modification and their structure to property relationships are studied. Then, applications of F-MOFs in adsorption and membrane gas separation are discussed. A detailed account of the design and capabilities of F-MOFs for the adsorption of various gases and the governing principles is provided. In addition, the exceptional characteristics of highly stable F-MOFs with engineered pore size and tuned structures are put into perspective to fabricate selective membranes for gas separation. Systematic analysis of the position of F-MOFs in gas separation revealed that F-MOFs are benchmark materials in most of the challenging gas separations. The outlook and future directions of the science and engineering of F-MOFs and their challenges are highlighted to tackle the issues of overcoming the trade-off between capacity/permeability and selectivity for a serious move towards industrialization.
Collapse
Affiliation(s)
- Abtin Ebadi Amooghin
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran.
| | - Hamidreza Sanaeepur
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran.
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain. .,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198, Moscow, Russian Federation
| | - Hermenegildo Garcia
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain.
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, 78249-0698, USA.
| |
Collapse
|
2
|
Xu HN, Gao J, Cheng Y. Auxiliary ligand directed two new Zn(II) compounds: from 2D→3D polythreaded framework to 2-fold interpenetrated 3D framework. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1978493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hong-Na Xu
- Department of Pharmacy, Mudanjiang Medical University, Heilongjiang, People’s Republic of China
| | - Jing Gao
- Department of Pharmacy, Mudanjiang Medical University, Heilongjiang, People’s Republic of China
| | - Yan Cheng
- Department of Pharmacy, Mudanjiang Medical University, Heilongjiang, People’s Republic of China
| |
Collapse
|
3
|
Su CH, Tsai MJ, Wang WK, Li YY, Wu JY. Engineered Bifunctional Luminescent Pillared-Layer Frameworks for Adsorption of CO 2 and Sensitive Detection of Nitrobenzene in Aqueous Media. Chemistry 2021; 27:6529-6537. [PMID: 33521989 DOI: 10.1002/chem.202005373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/17/2021] [Indexed: 11/06/2022]
Abstract
Through a dual-ligand synthetic approach, five isoreticular primitive cubic (pcu)-type pillared-layer metal-organic frameworks (MOFs), [Zn2 (dicarboxylate)2 (NI-bpy-44)]⋅x DMF⋅y H2 O, in which dicarboxylate=1,4-bdc (1), Br-1,4-bdc (2), NH2 -1,4-bdc (3), 2,6-ndc (4), and bpdc (5), have been engineered. MOFs 1-5 feature twofold degrees of interpenetration and have open pores of 27.0, 33.6, 36.8, 52.5, and 62.1 %, respectively. Nitrogen adsorption isotherms of activated MOFs 1'-5' at 77 K all displayed type I adsorption behavior, suggesting their microporous nature. Although 1' and 3'-5' exhibited type I adsorption isotherms of CO2 at 195 K, MOF 2' showed a two-step gate-opening sorption isotherm of CO2 . Furthermore, MOF 3' also had a significant influence of amine functions on CO2 uptake at high temperature due to the CO2 -framework interactions. MOFs 1-5 revealed solvent-dependent fluorescence properties; their strong blue-light emissions in aqueous suspensions were efficiently quenched by trace amounts of nitrobenzene (NB), with limits of detection of 4.54, 5.73, 1.88, 2.30, and 2.26 μm, respectively, and Stern-Volmer quenching constants (Ksv ) of 2.93×103 , 1.79×103 , 3.78×103 , 4.04×103 , and 3.21×103 m-1 , respectively. Of particular note, the NB-included framework, NB@3, provided direct evidence of the binding sites, which showed strong host-guest π-π and hydrogen-bonding interactions beneficial for donor-acceptor electron transfer and resulting in fluorescence quenching.
Collapse
Affiliation(s)
- Chun-Hao Su
- Department of Applied Chemistry, National Chi Nan University, Nantou, 545, Taiwan
| | - Meng-Jung Tsai
- Department of Applied Chemistry, National Chi Nan University, Nantou, 545, Taiwan
| | - Wei-Kai Wang
- Department of Applied Chemistry, National Chi Nan University, Nantou, 545, Taiwan
| | - Yi-Yun Li
- Department of Applied Chemistry, National Chi Nan University, Nantou, 545, Taiwan
| | - Jing-Yun Wu
- Department of Applied Chemistry, National Chi Nan University, Nantou, 545, Taiwan
| |
Collapse
|
4
|
Dhankhar SS, Nagaraja C. Construction of highly water-stable fluorinated 2D coordination polymers with various N, N’-donors: Syntheses, crystal structures and photoluminescence properties. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Dhankhar SS, Nagaraja CM. Construction of 3D lanthanide based MOFs with pores decorated with basic imidazole groups for selective capture and chemical fixation of CO2. NEW J CHEM 2020. [DOI: 10.1039/d0nj01448f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rational construction of three new 3D lanthanide-based MOFs exhibiting selective CO2 capture and conversion to value-added cyclic carbonates under mild conditions is reported.
Collapse
Affiliation(s)
| | - C. M. Nagaraja
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar 140001
- India
| |
Collapse
|
6
|
|
7
|
Joharian M, Morsali A. Ultrasound-assisted synthesis of two new fluorinated metal-organic frameworks (F-MOFs) with the high surface area to improve the catalytic activity. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.10.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
A Zn(II)-based pillar-layered metal–organic framework: Synthesis, structure, and CO2 selective adsorption. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.10.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Dhankhar SS, Nagaraja CM. Construction of a 3D porous Co(ii) metal–organic framework (MOF) with Lewis acidic metal sites exhibiting selective CO2 capture and conversion under mild conditions. NEW J CHEM 2019. [DOI: 10.1039/c8nj04947e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The application of a 3D Co(ii)-MOF as a recyclable heterogeneous catalyst for conversion of CO2 to cyclic carbonates is reported.
Collapse
Affiliation(s)
| | - C. M. Nagaraja
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar 140001
- India
| |
Collapse
|
10
|
Dhankhar SS, Sharma N, Nagaraja CM. Construction of bifunctional 2-fold interpenetrated Zn(ii) MOFs exhibiting selective CO2 adsorption and aqueous-phase sensing of 2,4,6-trinitrophenol. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00044e] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Design of Zn(ii) MOFs, [{Zn(BINDI)0.5(bpa)0.5(H2O)}·4H2O]n (MOF1) and [{Zn(BINDI)0.5(bpe)}·3H2O]n (MOF2) for selective CO2 storage and aqueous-phase detection of TNP is demonstrated.
Collapse
Affiliation(s)
| | - Nayuesh Sharma
- Department of Chemistry
- Indian Institute of Technology Ropar
- India
| | - C. M. Nagaraja
- Department of Chemistry
- Indian Institute of Technology Ropar
- India
| |
Collapse
|
11
|
Lin TR, Lee CH, Lan YC, Mendiratta S, Lai LL, Wu JY, Chi KM, Lu KL. Paddlewheel SBU based Zn MOFs: Syntheses, Structural Diversity, and CO₂ Adsorption Properties. Polymers (Basel) 2018; 10:E1398. [PMID: 30961323 PMCID: PMC6401755 DOI: 10.3390/polym10121398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 11/16/2022] Open
Abstract
Four Zn metal⁻organic frameworks (MOFs), {[Zn₂(2,6-ndc)₂(2-Pn)]·DMF}n (1), {[Zn₂(cca)₂(2-Pn)]·DMF}n (2), {[Zn₂(thdc)₂(2-Pn)]·3DMF}n (3), and {[Zn₂(1,4-ndc)₂(2-Pn)]·1.5DMF}n (4), were synthesized from zinc nitrate and N,N'-bis(pyridin-2-yl)benzene-1,4-diamine (2-Pn) with naphthalene-2,6-dicarboxylic acid (2,6-H₂ndc), 4-carboxycinnamic acid (H₂cca), 2,5-thiophenedicarboxylic acid (H₂thdc), and naphthalene-1,4-dicarboxylic acid (1,4-H₂ndc), respectively. MOFs 1⁻4 were all constructed from similar dinuclear paddlewheel {Zn₂(COO)₄} clusters and resulted in the formation of three kinds of uninodal 6-connected non-interpenetrated frameworks. MOFs 1 and 2 suit a topologic 4⁸·6⁷-net with 17.6% and 16.8% extra-framework voids, respectively, 3 adopts a pillared-layer open framework of 4⁸·6⁶·8-topology with sufficient free voids of 39.9%, and 4 features a pcu-type pillared-layer framework of 412·6³-topology with sufficient free voids of 30.9%. CO₂ sorption studies exhibited typical reversible type I isotherms with CO₂ uptakes of 55.1, 84.6, and 64.3 cm³ g-1 at 195 K and P/P₀ =1 for the activated materials 1', 2', and 4', respectively. The coverage-dependent isosteric heat of CO₂ adsorption (Qst) gave commonly decreased Qst traces with increasing CO₂ uptake for all the three materials and showed an adsorption enthalpy of 32.5 kJ mol-1 for 1', 38.3 kJ mol-1 for 2', and 23.5 kJ mol-1 for 4' at zero coverage.
Collapse
Affiliation(s)
- Ting-Ru Lin
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan.
| | - Cheng-Hua Lee
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Yi-Chen Lan
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | | | - Long-Li Lai
- Department of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan.
| | - Jing-Yun Wu
- Department of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan.
| | - Kai-Ming Chi
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan.
| | - Kuang-Lieh Lu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
12
|
Sharma N, Dhankhar SS, Kumar S, Kumar TJD, Nagaraja CM. Rational Design of a 3D MnII-Metal-Organic Framework Based on a Nonmetallated Porphyrin Linker for Selective Capture of CO2and One-Pot Synthesis of Styrene Carbonates. Chemistry 2018; 24:16662-16669. [DOI: 10.1002/chem.201803842] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Nayuesh Sharma
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar, Punjab 140001 India
| | - Sandeep Singh Dhankhar
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar, Punjab 140001 India
| | - Sandeep Kumar
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar, Punjab 140001 India
| | - T. J. Dhilip Kumar
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar, Punjab 140001 India
| | - C. Mallaiah Nagaraja
- Department of Chemistry; Indian Institute of Technology Ropar; Rupnagar, Punjab 140001 India
| |
Collapse
|
13
|
Muhammad R, Jyoti, Mohanty P. Nitrogen enriched triazine bridged mesoporous organosilicas for CO2 capture and dye adsorption applications. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Singh Dhankhar S, Sharma N, Kumar S, Dhilip Kumar TJ, Nagaraja CM. Rational Design of a Bifunctional, Two‐Fold Interpenetrated Zn
II
‐Metal–Organic Framework for Selective Adsorption of CO
2
and Efficient Aqueous Phase Sensing of 2,4,6‐Trinitrophenol. Chemistry 2017; 23:16204-16212. [DOI: 10.1002/chem.201703384] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Sandeep Singh Dhankhar
- Department of Chemistry Indian Institute of Technology Ropar Rupnagar 140001, Punjab India
| | - Nayuesh Sharma
- Department of Chemistry Indian Institute of Technology Ropar Rupnagar 140001, Punjab India
| | - Sandeep Kumar
- Department of Chemistry Indian Institute of Technology Ropar Rupnagar 140001, Punjab India
| | - T. J. Dhilip Kumar
- Department of Chemistry Indian Institute of Technology Ropar Rupnagar 140001, Punjab India
| | - C. M. Nagaraja
- Department of Chemistry Indian Institute of Technology Ropar Rupnagar 140001, Punjab India
| |
Collapse
|
15
|
Al-Terkawi AA, Scholz G, Buzanich AG, Reinsch S, Emmerling F, Kemnitz E. Ca- and Sr-tetrafluoroisophthalates: mechanochemical synthesis, characterization, and ab initio structure determination. Dalton Trans 2017; 46:6003-6012. [PMID: 28426071 DOI: 10.1039/c7dt00734e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New fluorinated coordination polymers were prepared mechanochemically by milling the alkaline earth metal hydroxides MII(OH)2·xH2O (MII: Ca, Sr) with tetrafluoroisophthalic acid (H2mBDC-F4). The structures of [{Ca(mBDC-F4)(H2O)2}·H2O] (1) and [{Sr(mBDC-F4)(H2O)2}·H2O] (2) were determined based on ab initio calculations and their powder X-ray diffraction (PXRD) data. The compounds are isomorphous and crystallize in the orthorhombic space group P212121. The determined structures were validated by using extended X-ray absorption (EXAFS) data. The new materials were thoroughly characterized using elemental analysis, thermal analysis, magic angle spinning NMR, and attenuated total reflection-infrared spectroscopy. Further characterization methods such as BET, dynamic vapor sorption, and scanning electron microscopy imaging were also used. Our investigations indicate that mechanochemistry is an efficient method for preparing such materials.
Collapse
Affiliation(s)
- Abdal-Azim Al-Terkawi
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D - 12489 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Ugale B, Dhankhar SS, Nagaraja CM. Construction of 3D homochiral metal–organic frameworks (MOFs) of Cd(ii): selective CO2adsorption and catalytic properties for the Knoevenagel and Henry reaction. Inorg Chem Front 2017. [DOI: 10.1039/c6qi00506c] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Syntheses of two new homochiral, 3D metal–organic frameworks (MOFs) of Cd(ii) and the selective CO2adsorption and catalytic properties of1has been demonstrated.
Collapse
Affiliation(s)
- Bharat Ugale
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar 140001
- India
| | | | - C. M. Nagaraja
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar 140001
- India
| |
Collapse
|
17
|
Ugale B, Dhankhar SS, Nagaraja CM. Construction of 3-Fold-Interpenetrated Three-Dimensional Metal–Organic Frameworks of Nickel(II) for Highly Efficient Capture and Conversion of Carbon Dioxide. Inorg Chem 2016; 55:9757-9766. [DOI: 10.1021/acs.inorgchem.6b01569] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bharat Ugale
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Sandeep Singh Dhankhar
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - C. M. Nagaraja
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| |
Collapse
|
18
|
Deenadayalan MS, Sharma N, Verma PK, Nagaraja CM. Visible-Light-Assisted Photocatalytic Reduction of Nitroaromatics by Recyclable Ni(II)-Porphyrin Metal-Organic Framework (MOF) at RT. Inorg Chem 2016; 55:5320-7. [PMID: 27191376 DOI: 10.1021/acs.inorgchem.6b00296] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A microporous Ni(II)-porphyrin metal-organic framework (MOF), [Ni3(Ni-HTCPP)2(μ2-H2O)2(H2O)4(DMF)2]·2DMF, (MOF1) (where, Ni-HTCPP = 5,10,15,20-tetrakis(4-benzoate) porphyrinato-Ni(II)) has been synthesized by the solvothermal route. Single-crystal X-ray diffraction study of 1 reveals a 2D network structure constituted by Ni3 cluster and [Ni-HTCPP](3-) metalloligand having (3, 6)-connected binodal net with {4(3)}2{4(6)·6(6)·8(3)}-kgd net topology. The 2D layers are further stacked together through π-π interactions between the porphyrin linkers to generate a 3D supramolecular framework which houses 1D channels with dimension of ∼5.0 × 9.0 Å(2) running along the crystallographic a-axis. Visible-light-assisted photocatalytic investigation of MOF1 for heterogeneous reduction of various nitroaromatics at room temperature resulted in the corresponding amines with high yield and selectivity. On the contrary, the Ni(II)-centered porphyrin tetracarboxylic acid [Ni-H4TCPP] metalloligand does not show the photocatalytic activity under similar conditions. The remarkably high catalytic performance of MOF1 over [Ni-H4TCPP] metalloligand has been attributed due to cooperative catalysis involving the Ni-centered porphyrin secendary building units (SBUs) and the Ni3-oxo node. Further, the MOF1 was recycled and reused up to three cycles without any significant loss of catalytic activity as well as structural rigidity. To the best of our knowledge, MOF1 represents the first example of MOF based on 3d metal ion exhibiting visible-light-assisted reduction of nitroaromatics under mild conditions without the assistance of noble metal cocatalysts.
Collapse
Affiliation(s)
- M S Deenadayalan
- Department of Chemistry, Indian Institute of Technology Ropar , Rupnagar, Punjab 140001, India
| | - Nayuesh Sharma
- Department of Chemistry, Indian Institute of Technology Ropar , Rupnagar, Punjab 140001, India
| | - Praveen Kumar Verma
- Department of Chemistry, Indian Institute of Technology Ropar , Rupnagar, Punjab 140001, India
| | - C M Nagaraja
- Department of Chemistry, Indian Institute of Technology Ropar , Rupnagar, Punjab 140001, India
| |
Collapse
|
19
|
Dhankhar SS, Nagaraja CM. Green synthesis, optical and magnetic properties of a MnIImetal–organic framework (MOF) that exhibits high heat of H2adsorption. RSC Adv 2016. [DOI: 10.1039/c6ra17898g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Green synthesis of a 3D, Mn(ii) MOF, [Mn3(NDC)3(DMA)4]n(1) has been achieved by employing mechanochemical and sonochemical routes and1′exhibits an interesting gas uptake properties with a high value of isosteric heat of adsorption (Qst) for H2.
Collapse
Affiliation(s)
| | - C. M. Nagaraja
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar 140001
- India
| |
Collapse
|