1
|
Aman M, Dostál L, Růžička A, Růžičková Z, Jambor R. B-substituted group 1 phosphides: synthesis and reactivity. Dalton Trans 2023; 52:16870-16885. [PMID: 37916487 DOI: 10.1039/d3dt02568c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
1-Boryl-8-phosphinonaphthalenes 1-BCy2-8-PCl2-C10H6 (1) and 1-BCy2-8-PPhCl-C10H6 (2) were prepared and used as starting materials for the synthesis of B-substituted phosphides. The reduction of 1 and 2 by Mg provided neutral compounds [1-BCy-8-PCy-C10H6]2 (3) and [1-BCy2-8-PPh-C10H6]2 (4). Compound 3 represents the dimer of phosphinoborane 1-BCy-8-PCy-C10H6 while complex 4 is a rare example of a discrete B ← P coordinated diphosphine. The reduction of 2 by Na or K in THF yielded B-substituted group 1 phosphides [Na(THF)3]+[1-BCy2-8-PPh-C10H6]- (5) and {[K(THF)2]+[1-BCy2-8-PPh-C10H6]-}∞ (6), which structurally resembled bulky group 1 phosphides. Complex 5 showed easy activation of elemental chalcogens E (E = O, S, Se) to give B-substituted chalcogenophosphinites {[Na(THF)2]+[1-BCy2-8-P(E)Ph-C10H6]}2 (E = O (7), S (8), Se (9)) as the products of chalcogen insertion into the P-Na bond. Importantly no oxidation to dichalcogenophosphinates was observed. Compound 5 is tolerant of the CO polar bonds in organic substrates and the reactions of 5 with 2,3-butanedione or an acyl chloride provided {[Na(THF)2]+[1-BCy2-8-P{CHC(O)C(Me)O}Ph-C10H6]-}2 (10) and [1-BCy2-8-P{C(O)tBu}Ph-C10H6] (11). Finally, B-coordinated phosphatetrylenes [1-BCy2-8-P(SnL)Ph-C10H6] (12) and [1-BCy2-8-P(PbL)Ph-C10H6] (13) (L is {2,6-(Me2NCH2)C6H3}-) were also prepared by substitution reactions of 5.
Collapse
Affiliation(s)
- Michal Aman
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| | - Libor Dostál
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| | - Zdenka Růžičková
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| | - Roman Jambor
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| |
Collapse
|
2
|
Demirer T, Morgenstern B, Andrada DM. Synthesis, Structure, and Bonding Analysis of Lewis Base and Lewis Acid/Base‐Stabilized Phosphanylgallanes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- T.Ilgin Demirer
- Saarland University: Universitat des Saarlandes Chemistry Department Campus C4.1 66123 Saarbrücken GERMANY
| | - Bernd Morgenstern
- Saarland University: Universitat des Saarlandes Chemistry Department Campus C4.1 66123 Saarbrücken GERMANY
| | - Diego Marcelo Andrada
- Universitat des Saarlandes Naturwissenschaftlich-Technische Fakultat Fachberei Chemie Campus C4.1 66123 Saarbrücken GERMANY
| |
Collapse
|
3
|
Dankert F, Hering-Junghans C. Heavier group 13/15 multiple bond systems: synthesis, structure and chemical bond activation. Chem Commun (Camb) 2022; 58:1242-1262. [PMID: 35014640 DOI: 10.1039/d1cc06518a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heavier group 13/15 multiple bonds have been under investigation since the late 80s and to date, several examples have been published, which shows the obsoleteness of the so-called double bond rule. Especially in the last few years, more and more group 13/15 multiple bonds became synthetically feasible and their application in terms of small molecule activation has been demonstrated. Our group has recently shown that the combination of the pnictinidene precursor DipTer-Pn(PMe3) (Pn = P, As) in combination with Al(I) synthons afforded the first examples of phospha- and arsaalumenes as isolable and thermally robust compounds. This feature article is intended to show the recent developments in the field, to outline early synthetic approaches and to discuss strategies to unlock the synthetic potential of these elusive chemical bonds.
Collapse
Affiliation(s)
- F Dankert
- Leibniz Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29A, 18059 Rostock, Germany.
| | - C Hering-Junghans
- Leibniz Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29A, 18059 Rostock, Germany.
| |
Collapse
|
4
|
Raiser D, Eichele K, Schubert H, Wesemann L. Phosphine-Stabilized Pnictinidenes. Chemistry 2021; 27:14073-14080. [PMID: 34291518 PMCID: PMC8518042 DOI: 10.1002/chem.202102320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 11/12/2022]
Abstract
The reaction of the intramolecular germylene‐phosphine Lewis pair (o‐PPh2)C6H4GeAr* (1) with Group 15 element trichlorides ECl3 (E=P, As, Sb) was investigated. After oxidative addition, the resulting compounds (o‐PPh2)C6H4(Ar*)Ge(Cl)ECl2 (2: E=P, 3: E=As, 4: E=Sb) were reduced by using sodium metal or LiHBEt3. The molecular structures of the phosphine‐stabilized phosphinidene (o‐PPh2)C6H4(Ar*)Ge(Cl)P (5), arsinidene (o‐PPh2)C6H4(Ar*)Ge(Cl)As (6) and stibinidene (o‐PPh2)C6H4(Ar*)Ge(Cl)Sb (7) are presented; they feature a two‐coordinate low‐valent Group 15 element. After chloride abstraction, a cyclic germaphosphene [(o‐PPh2)C6H4(Ar*)GeP] [B(C6H3(CF3)2)4] (8) was isolated. The 31P NMR data of the germaphosphene were compared with literature examples and analyzed by quantum chemical calculations. The phosphinidene was treated with [iBu2AlH]2, and the product of an Al−H addition to the low‐valent phosphorus atom (o‐PPh2)C6H4(Ar*)Ge(H)P(H)Al(C4H9)2 (9) was characterized.
Collapse
Affiliation(s)
- Dominik Raiser
- Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Klaus Eichele
- Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Hartmut Schubert
- Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Lars Wesemann
- Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| |
Collapse
|
5
|
Phan NA, Sherbow TJ, Fettinger JC, Berben LA. Synthesis of Unsupported Primary Phosphido Complexes of Aluminum(III). Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Nathan A. Phan
- Department of Chemistry The University of California Davis CA 95616 United States
| | - Tobias J. Sherbow
- Department of Chemistry The University of California Davis CA 95616 United States
| | - James C. Fettinger
- Department of Chemistry The University of California Davis CA 95616 United States
| | - Louise A. Berben
- Department of Chemistry The University of California Davis CA 95616 United States
| |
Collapse
|
6
|
Fischer M, Nees S, Kupfer T, Goettel JT, Braunschweig H, Hering-Junghans C. Isolable Phospha- and Arsaalumenes. J Am Chem Soc 2021; 143:4106-4111. [DOI: 10.1021/jacs.1c00204] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Malte Fischer
- Leibniz Institut für Katalyse e.V. (LIKAT), A.-Einstein-Str.3a, 18059 Rostock, Germany
| | - Samuel Nees
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Thomas Kupfer
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - James T. Goettel
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | |
Collapse
|
7
|
Koshino K, Kinjo R. Fragmentation of White Phosphorus by a Cyclic (Alkyl)(Amino)Alumanyl Anion. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00444] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kota Koshino
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Rei Kinjo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| |
Collapse
|
8
|
Syntheses and Structures of Novel λ3,λ3-Phosphanylalumanes Fully Bearing Carbon Substituents and Their Substituent Effects. INORGANICS 2019. [DOI: 10.3390/inorganics7110132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The novel phosphanylalumanes, Al–P single-bond species, fully bearing carbon protecting groups on aluminum and phosphorus atoms, are synthesized by the reactions of aluminum monohalides [(t-Bu)2AlBr and (C6F5)2AlCl·0.5(toluene)] with Mes2PLi. Regarding the t-Bu system, λ3,λ3-phosphanylalumane is obtained. Concerning the C6F5 system, on the other hand, the corresponding LiCl complex, λ4,λ4-phosphanylalumane, is obtained. The Al–P bond lengths of C6F5-substituted λ3,λ4-, and λ4,λ4-derivatives are much shorter than those of the reported λ3,λ4-phosphanylalumane derivatives and comparable to that observed for the previously reported λ3,λ3-phosphanylalumanes. Theoretical calculations reveal that the binding of the C6F5 groups to Al results in a large contribution of Al and a large s-character in the Al–P bond of phosphanylalumanes. Considering t-Bu-substituted phosphanylalumanes, the Al–P bond lengths reflect the coordination number of Al, showing a longer Al–P bond length in the case of λ4-Al as compared with that of λ3-Al. Combining the structural, spectroscopic, and theoretical results, the t-Bu-substituted λ3,λ3-phosphanylalumane has well separated vacant p orbital and lone pairs, which is suitable for reactivity studies.
Collapse
|
9
|
Agou T, Ikeda S, Sasamori T, Tokitoh N. Synthesis and Structure of Lewis Base-Coordinated Phosphanylalumanes Bearing P-H and Al-Br Moieties. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomohiro Agou
- College of Engineering; Ibaraki University; 4-12-1 Nakanarusawa 316-0033 Hitachi, Ibaraki Japan
| | - Shin Ikeda
- Institute for Chemical Research; Kyoto University; Gokasho, Uji 611-0033 Kyoto Japan
| | - Takahiro Sasamori
- Graduate School of Natural Sciences; Nagoya City University; Yamanohata 1, Mizuho-cho, Mizuho-ku 467-8501 Nagoya, Aichi Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research; Kyoto University; Gokasho, Uji 611-0033 Kyoto Japan
- Integrated Research Consortium on Chemical Science; Uji 611-0011 Kyoto Japan
| |
Collapse
|