1
|
Mansour AM, Khaled RM, Shehab OR. A comprehensive survey of Mn(I) carbonyls as CO-releasing molecules reported over the last two decades. Dalton Trans 2024; 53:19022-19057. [PMID: 39543968 DOI: 10.1039/d4dt02091j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Over the last two decades, manganese(I) carbonyl complexes have been widely investigated as carbon monoxide releasing molecules (CORMs) to transfer small quantities of CO to biological targets to have beneficial impacts such as preventing ischemia reperfusion injury and reducing organ transplant rejection. Furthermore, these complexes exhibit beneficial anti-coagulative, anti-apoptotic, anti-inflammatory, and anti-proliferative properties. Owing to their highly controlled substitution chemistry and oxidative durability, Mn(I) carbonyl moieties were combined with a wide range of auxiliary ligands, including biomolecules. This review focused on tri- and tetracarbonyl Mn(I) complexes that were exposed to light, changed the redox status, or underwent thermal activation to release carbon monoxide. Kinetic parameters, stability in the dark, number of CO release equivalents, CO detection tools, and the nature of solvents used in the studies are reported and tabulated. An overview of all the previously published Mn(I) CORMs is specifically provided to define the method of action of these promising biologically active compounds and discuss their possible therapeutic applications in relation to their CO-releasing and biocompatibility characteristics.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, United Arab Emirates University, Al-Ain, United Arab Emirates.
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Rabaa M Khaled
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| |
Collapse
|
2
|
Thomas JM, Kuduvalli SS, T.S A, Sivasankar C. Investigation of the CO releasing ability of azachalcone bound Mn(I) tricarbonyl complexes and their anti‐proliferative properties. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jisha Mary Thomas
- Catalysis and Energy Laboratory, Department of Chemistry Pondicherry University (A Central University) Puducherry INDIA
| | - Shreyas S. Kuduvalli
- Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to‐be) University Puducherry India
| | - Anitha T.S
- Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to‐be) University Puducherry India
| | - Chinnappan Sivasankar
- Catalysis and Energy Laboratory, Department of Chemistry Pondicherry University (A Central University) Puducherry INDIA
| |
Collapse
|
3
|
Stout MJ, Stefan A, Skelton BW, Sobolev AN, Massi M, Hochkoeppler A, Stagni S, Simpson PV. Synthesis and Photochemical Properties of Manganese(I) Tricarbonyl Diimine Complexes Bound to Tetrazolato Ligands. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201900987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Matthew J. Stout
- Curtin Institute for Functional Molecules and Interfaces School of Molecular and Life Sciences Curtin University Kent Street, Bentley 6102 Perth Australia
| | - Alessandra Stefan
- CSGI, Department of Chemistry School of Molecular and Life Sciences University of Florence 50019 Sesto Fiorentino (FI) Italy
- Department of Pharmacy and Biotechnology School of Molecular and Life Sciences University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Brian W. Skelton
- School of Molecular Sciences and CMCA School of Molecular and Life Sciences The University of Western Australia 35 Stirling Highway 6009 Perth Western Australia
| | - Alexandre N. Sobolev
- School of Molecular Sciences and CMCA School of Molecular and Life Sciences The University of Western Australia 35 Stirling Highway 6009 Perth Western Australia
| | - Massimiliano Massi
- Curtin Institute for Functional Molecules and Interfaces School of Molecular and Life Sciences Curtin University Kent Street, Bentley 6102 Perth Australia
| | - Alejandro Hochkoeppler
- CSGI, Department of Chemistry School of Molecular and Life Sciences University of Florence 50019 Sesto Fiorentino (FI) Italy
- Department of Pharmacy and Biotechnology School of Molecular and Life Sciences University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Stefano Stagni
- Department of Industrial Chemistry “Toso Montanari” School of Molecular and Life Sciences University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Peter V. Simpson
- Curtin Institute for Functional Molecules and Interfaces School of Molecular and Life Sciences Curtin University Kent Street, Bentley 6102 Perth Australia
| |
Collapse
|
4
|
Aucott BJ, Duhme-Klair AK, Moulton BE, Clark IP, Sazanovich IV, Towrie M, Hammarback LA, Fairlamb IJS, Lynam JM. Manganese Carbonyl Compounds Reveal Ultrafast Metal–Solvent Interactions. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00212] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Benjamin J. Aucott
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | | | - Benjamin E. Moulton
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Ian P. Clark
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, U.K
| | - Igor V. Sazanovich
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, U.K
| | - Michael Towrie
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, U.K
| | | | - Ian J. S. Fairlamb
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Jason M. Lynam
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| |
Collapse
|
5
|
Hammarback LA, Robinson A, Lynam JM, Fairlamb IJS. Mechanistic Insight into Catalytic Redox-Neutral C-H Bond Activation Involving Manganese(I) Carbonyls: Catalyst Activation, Turnover, and Deactivation Pathways Reveal an Intricate Network of Steps. J Am Chem Soc 2019; 141:2316-2328. [PMID: 30698423 DOI: 10.1021/jacs.8b09095] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Manganese(I) carbonyl-catalyzed C-H bond functionalization of 2-phenylpyridine and related compounds containing suitable metal directing groups has recently emerged as a potentially useful synthetic methodology for the introduction of various groups to the ortho position of a benzene ring. Preliminary mechanistic studies have highlighted that these reactions could proceed via numerous different species and steps and, moreover, potentially different catalytic cycles. The primary requirement for typically 10 mol % catalyst, oftentimes the ubiquitous precursor catalyst, BrMn(CO)5, has not yet been questioned nor significantly improved upon, suggesting catalytic deactivation may be a serious issue to be understood and resolved. Several critical questions are further raised by the species responsible for providing a source of protons in the protonation of vinyl-manganese(I) carbonyl intermediates. In this study, using a combination of experimental and theoretical methods, we provide comprehensive answers to the key mechanistic questions concerning the Mn(I) carbonyl-catalyzed C-H bond functionalization of 2-phenylpyridine and related compounds. Our results enable the explanation of alkyne substrate dependencies, i.e., internal versus terminal alkynes. We found that there are different catalyst activation pathways for BrMn(CO)5, e.g., terminal alkynes lead to the generation of MnI-acetylide species, whose formation is reminiscent of CuI-acetylide species proposed to be of critical importance in Sonogashira cross-coupling processes. We have unequivocally established that alkyne, 2-phenylpyridine, and water can facilitate hydrogen transfer in the protonation step, leading to the liberation of protonated alkene products.
Collapse
Affiliation(s)
- L Anders Hammarback
- Department of Chemistry , University of York , York , North Yorkshire YO10 5DD , United Kingdom
| | - Alan Robinson
- Syngenta Crop Protection AG , Breitenloh 5 , Münchwilen 4333 , Switzerland
| | - Jason M Lynam
- Department of Chemistry , University of York , York , North Yorkshire YO10 5DD , United Kingdom
| | - Ian J S Fairlamb
- Department of Chemistry , University of York , York , North Yorkshire YO10 5DD , United Kingdom
| |
Collapse
|
6
|
Aucott BJ, Eastwood JB, Anders Hammarback L, Clark IP, Sazanovich IV, Towrie M, Fairlamb IJS, Lynam JM. Insight into the mechanism of CO-release from trypto-CORM using ultra-fast spectroscopy and computational chemistry. Dalton Trans 2019; 48:16426-16436. [DOI: 10.1039/c9dt03343b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photolysis of trypto-CORM results in ultra-fast CO-dissociation and formation of a 16-e triplet followed by solvation.
Collapse
Affiliation(s)
| | | | | | - Ian P. Clark
- Central Laser Facility
- STFC Rutherford Appleton Laboratory
- Didcot
- UK
| | | | - Michael Towrie
- Central Laser Facility
- STFC Rutherford Appleton Laboratory
- Didcot
- UK
| | | | | |
Collapse
|
7
|
Kubeil M, Vernooij RR, Kubeil C, Wood BR, Graham B, Stephan H, Spiccia L. Studies of Carbon Monoxide Release from Ruthenium(II) Bipyridine Carbonyl Complexes upon UV-Light Exposure. Inorg Chem 2017; 56:5941-5952. [PMID: 28467070 DOI: 10.1021/acs.inorgchem.7b00599] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The UV-light-induced CO release characteristics of a series of ruthenium(II) carbonyl complexes of the form trans-Cl[RuLCl2(CO)2] (L = 4,4'-dimethyl-2,2'-bipyridine, 4'-methyl-2,2'-bipyridine-4-carboxylic acid, or 2,2'-bipyridine-4,4'-dicarboxylic acid) have been elucidated using a combination of UV-vis absorbance and Fourier transform infrared spectroscopies, multivariate curve resolution alternating least-squares analysis, and density functional theory calculations. In acetonitrile, photolysis appears to proceed via a serial three-step mechanism involving the sequential formation of [RuL(CO)(CH3CN)Cl2], [RuL(CH3CN)2Cl2], and [RuL(CH3CN)3Cl]+. Release of the first CO molecule occurs quickly (k1 ≫ 3 min-1), while release of the second CO molecule proceeds at a much more modest rate (k2 = 0.099-0.17 min-1) and is slowed by the presence of electron-withdrawing carboxyl substituents on the bipyridine ligand. In aqueous media (1% dimethyl sulfoxide in H2O), the two photodecarbonylation steps proceed much more slowly (k1 = 0.46-1.3 min-1 and k2 = 0.026-0.035 min-1, respectively) and the influence of the carboxyl groups is less pronounced. These results have implications for the design of new light-responsive CO-releasing molecules ("photoCORMs") intended for future medical use.
Collapse
Affiliation(s)
- Manja Kubeil
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - Robbin R Vernooij
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Conventry CV4 7AL, U.K
| | | | | | - Bim Graham
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400, D-01328 Dresden, Germany
| | | |
Collapse
|
8
|
Aucott BJ, Ward JS, Andrew SG, Milani J, Whitwood AC, Lynam JM, Parkin A, Fairlamb IJS. Redox-Tagged Carbon Monoxide-Releasing Molecules (CORMs): Ferrocene-Containing [Mn(C^N)(CO)4] Complexes as a Promising New CORM Class. Inorg Chem 2017; 56:5431-5440. [DOI: 10.1021/acs.inorgchem.7b00509] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Benjamin J. Aucott
- Department of Chemistry, University of York, York, YO10 5DD, United Kingdom
| | - Jonathan S. Ward
- Department of Chemistry, University of York, York, YO10 5DD, United Kingdom
| | - Samuel G. Andrew
- Department of Chemistry, University of York, York, YO10 5DD, United Kingdom
| | - Jessica Milani
- Department of Chemistry, University of York, York, YO10 5DD, United Kingdom
| | - Adrian C. Whitwood
- Department of Chemistry, University of York, York, YO10 5DD, United Kingdom
| | - Jason M. Lynam
- Department of Chemistry, University of York, York, YO10 5DD, United Kingdom
| | - Alison Parkin
- Department of Chemistry, University of York, York, YO10 5DD, United Kingdom
| | - Ian J. S. Fairlamb
- Department of Chemistry, University of York, York, YO10 5DD, United Kingdom
| |
Collapse
|