1
|
Shahrezaei M, Hejazi SMH, Kmentova H, Sedajova V, Zboril R, Naldoni A, Kment S. Ultrasound-Driven Defect Engineering in TiO 2-x Nanotubes─Toward Highly Efficient Platinum Single Atom-Enhanced Photocatalytic Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37976-37985. [PMID: 37490013 PMCID: PMC10416212 DOI: 10.1021/acsami.3c04811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
Single-atom catalysts (SACs) have demonstrated superior catalytic activity and selectivity compared to nanoparticle catalysts due to their high reactivity and atom efficiency. However, stabilizing SACs within hosting substrates and their controllable loading preventing single atom clustering remain the key challenges in this field. Moreover, the direct comparison of (co-) catalytic effect of single atoms vs nanoparticles is still highly challenging. Here, we present a novel ultrasound-driven strategy for stabilizing Pt single-atomic sites over highly ordered TiO2 nanotubes. This controllable low-temperature defect engineering enables entrapment of platinum single atoms and controlling their content through the reaction time of consequent chemical impregnation. The novel methodology enables achieving nearly 50 times higher normalized hydrogen evolution compared to pristine titania nanotubes. Moreover, the developed procedure allows the decoration of titania also with ultrasmall nanoparticles through a longer impregnation time of the substrate in a very dilute hexachloroplatinic acid solution. The comparison shows a 10 times higher normalized hydrogen production of platinum single atoms compared to nanoparticles. The mechanistic study shows that the novel approach creates homogeneously distributed defects, such as oxygen vacancies and Ti3+ species, which effectively trap and stabilize Pt2+ and Pt4+ single atoms. The optimized platinum single-atom photocatalyst shows excellent performance of photocatalytic water splitting and hydrogen evolution under one sun solar-simulated light, with TOF values being one order of magnitude higher compared to those of traditional thermal reduction-based methods. The single-atom engineering based on the creation of ultrasound-triggered chemical traps provides a pathway for controllable assembling stable and highly active single-atomic site catalysts on metal oxide support layers.
Collapse
Affiliation(s)
- Mahdi Shahrezaei
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials, Palacký
University Olomouc, Slechtitelu 27, 77900 Olomouc, Czech Republic
- Department
of Physical Chemistry, Faculty of Science, Palacky University, 17. listopadu 1192/12, 77900 Olomouc, Czech Republic
| | - S. M. Hossein Hejazi
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials, Palacký
University Olomouc, Slechtitelu 27, 77900 Olomouc, Czech Republic
- CEET,
Nanotechnology Centre, VŠB−Technical
University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava-Poruba, Czech Republic
| | - Hana Kmentova
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials, Palacký
University Olomouc, Slechtitelu 27, 77900 Olomouc, Czech Republic
| | - Veronika Sedajova
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials, Palacký
University Olomouc, Slechtitelu 27, 77900 Olomouc, Czech Republic
| | - Radek Zboril
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials, Palacký
University Olomouc, Slechtitelu 27, 77900 Olomouc, Czech Republic
- CEET,
Nanotechnology Centre, VŠB−Technical
University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava-Poruba, Czech Republic
| | - Alberto Naldoni
- Department
of Chemistry and NIS Centre, University
of Turin, Turin 10125, Italy
| | - Stepan Kment
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials, Palacký
University Olomouc, Slechtitelu 27, 77900 Olomouc, Czech Republic
- CEET,
Nanotechnology Centre, VŠB−Technical
University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava-Poruba, Czech Republic
| |
Collapse
|
2
|
He F, Wang Y, Liu J, Yao X. One-dimensional carbon based nanoreactor fabrication by electrospinning for sustainable catalysis. EXPLORATION (BEIJING, CHINA) 2023; 3:20220164. [PMID: 37933386 PMCID: PMC10624385 DOI: 10.1002/exp.20220164] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
An efficient and economical electrocatalyst as kinetic support is key to electrochemical reactions. For this reason, chemists have been working to investigate the basic changing of chemical principles when the system is confined in limited space with nanometer-scale dimensions or sub-microliter volumes. Inspired by biological research, the design and construction of a closed reaction environment, namely the reactor, has attracted more and more interest in chemistry, biology, and materials science. In particular, nanoreactors became a high-profile rising star and different types of nanoreactors have been fabricated. Compared with the traditional particle nanoreactor, the one-dimensional (1D) carbon-based nanoreactor prepared by the electrospinning process has better electrolyte diffusion, charge transfer capabilities, and outstanding catalytic activity and selectivity than the traditional particle catalyst which has great application potential in various electrochemical catalytic reactions.
Collapse
Affiliation(s)
- Fagui He
- State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoningChina
| | - Yiyan Wang
- DICP‐Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology InstituteUniversity of SurreyGuilfordSurreyUK
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical TechnologySinopecShanghaiChina
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoningChina
- DICP‐Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology InstituteUniversity of SurreyGuilfordSurreyUK
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsFudan UniversityShanghaiP. R. China
| | - Xiangdong Yao
- School of Advanced EnergySun‐yat Sen University (Shenzhen)ShenzhenGuangdongChina
| |
Collapse
|
3
|
Sayegh S, Abid M, Tanos F, Cretin M, Lesage G, Zaviska F, Petit E, Navarra B, Iatsunskyi I, Coy E, Viter R, Fedorenko V, Ramanavicius A, Razzouk A, Stephan J, Bechelany M. N-doped TiO2 nanotubes synthesized by atomic layer deposition for acetaminophen degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Anucha CB, Altin I, Bacaksiz E, Stathopoulos VN. Titanium Dioxide (TiO₂)-Based Photocatalyst Materials Activity Enhancement for Contaminants of Emerging Concern (CECs) Degradation: In the Light of Modification Strategies. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100262] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
5
|
Immobilized TiO2/ZnO Sensitized Copper (II) Phthalocyanine Heterostructure for the Degradation of Ibuprofen under UV Irradiation. SEPARATIONS 2021. [DOI: 10.3390/separations8030024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Photocatalytic coatings of TiO2/ZnO/CuPc were developed on stainless steel substrates by subsequent sol gel dip coating for TiO2, spray pyrolysis for ZnO, and spin coating for copper (ii) phthalocyanine (CuPc) deposition. The latter compound was successfully prepared using a Schiff-based process. The materials and coatings developed were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy with attached energy dispersive spectroscopy (SEM-EDS), UV-Vis spectroscopy, room temperature photoluminescence (RTPL) spectroscopy, H1-nuclear magnetic resonance (1H-NMR) spectroscopy, C13-nuclear magnetic resonance (13C-NMR) spectroscopy, and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS). The as-deposited TiO2/ZnO/CuPc on stainless steel retained in pristine state the structural and morphological/spectroscopic characteristics of its respective components. Estimated energy band gap values were 3.22 eV, 3.19 eV, 3.19 eV for TiO2, ZnO, TiO2/ZnO respectively and 1.60 eV, 2.44 eV, and 2.92 eV for CuPc. The photocatalytic efficiency of the fabricated TiO2/ZnO/CuPc coatings was tested toward ibuprofen (IBF). After 4 h irradiation under 365 nm UV, an increased degradation of about 80% was achieved over an initial 5 mg/L ibuprofen (IBF). This was much higher compared to about 42% and 18% IBF degradation by TiO2/ZnO and TiO2 thin film, respectively. In all cases, the stability of the best-performing photocatalyst was investigated showing a small decline to 77% of IBF degradation after the 5th cycle run. The effect of pH, reactive oxygen species (ROS) probe, shed light on a possible catalytic mechanism that was suggested.
Collapse
|
6
|
Cai Y, Yuan F, Li F, Kang H, Xue D, Huo S, Yu F, Fang J, Yang Y. Spacing prior to decorating TiO 2 nanowires with dewetted Au nanoparticles for boosting photoelectrochemical water oxidation. CrystEngComm 2021. [DOI: 10.1039/d1ce00886b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dewetted Au nanoparticles are used as masks to space out TiO2 nanowires, which restrict the planar coalescence of nanowires and favor the successive decoration of Au nanoparticles by dewetting, thus boosting the PEC water oxidation performance.
Collapse
Affiliation(s)
- Yun Cai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Fengyu Yuan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Fan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Huihui Kang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Daxiang Xue
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Siping Huo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Fengjiao Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jun Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yang Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
7
|
Multi-Leg TiO2 Nanotube Photoelectrodes Modified by Platinized Cyanographene with Enhanced Photoelectrochemical Performance. Catalysts 2020. [DOI: 10.3390/catal10060717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Highly ordered multi-leg TiO2 nanotubes (MLTNTs) functionalized with platinized cyanographene are proposed as a hybrid photoelectrode for enhanced photoelectrochemical water splitting. The platinized cyanographene and cyanographene/MLTNTs composite yielded photocurrent densities 1.66 and 1.25 times higher than those of the pristine MLTNTs nanotubes, respectively. Open circuit VOC decay (VOCD), electrochemical impedance spectroscopy (EIS), and intensity-modulated photocurrent spectroscopy (IMPS) analyses were performed to study the recombination rate, charge transfer characteristics, and transfer time of photogenerated electrons, respectively. According to the VOCD and IMPS results, the addition of (platinized) cynographene decreased the recombination rate and the transfer time of photogenerated electrons by one order of magnitude. Furthermore, EIS results showed that the (platinized) cyanographene MLTNTs composite has the lowest charge transfer resistance and therefore the highest photoelectrochemical performance.
Collapse
|
8
|
Abstract
Dating from the seminal work of Fujishima et al. [...]
Collapse
|