1
|
Wauteraerts N, Tu M, Chanut N, Rodríguez-Hermida S, Gandara-Loe J, Ameloot R. Vapor-assisted synthesis of the MOF-74 metal-organic framework family from zinc, cobalt, and magnesium oxides. Dalton Trans 2023; 52:17873-17880. [PMID: 37975724 DOI: 10.1039/d3dt01785k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
In this work, we investigate the vapor-assisted synthesis of the metal-organic framework MOF-74 starting from three metal oxides (ZnO, CoO, and MgO). Depending on the nature of the added vapor (H2O, DMF, DMSO), the metal oxide, and the temperature, the outcome of the reaction can be directed towards the desired porous phase. Ex situ and in situ XRD measurements reveal the formation of an intermediate phase during the reaction of MgO with H4dobdc, while the MOF-74 phase forms directly for ZnO and CoO. The reduced CO2 uptake of the resulting materials compared to solvothermally prepared MOFs might be offset by the convenience of the presented route and the promise of a high space time yield.
Collapse
Affiliation(s)
- Nathalie Wauteraerts
- Center for Membrane Separation, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven - University of Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Min Tu
- Center for Membrane Separation, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven - University of Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
- 2020 X-Lab and State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Nicolas Chanut
- Center for Membrane Separation, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven - University of Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Sabina Rodríguez-Hermida
- Center for Membrane Separation, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven - University of Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
- Servizos de Apoio á Investigación, Universidade da Coruña, Campus Elviña s/n 15071, A Coruña, Spain
| | - Jesus Gandara-Loe
- Center for Membrane Separation, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven - University of Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Rob Ameloot
- Center for Membrane Separation, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven - University of Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
2
|
Huskić I, Friščić T. Geomimetic approaches in the design and synthesis of metal-organic frameworks. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180221. [PMID: 31130097 PMCID: PMC6562343 DOI: 10.1098/rsta.2018.0221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The recent discovery of minerals with metal-organic framework (MOF) structures has challenged the view of MOFs as purely synthetic materials. At the same time, the application of geo-inspired synthetic methodologies, such as accelerated ageing and pseudomorphic replication, has enabled a cleaner, more environmentally friendly synthesis of MOFs from mineral-like feedstocks, as well as the assembly of materials with structure controlled at both micro- and meso-scales. These almost concomitant developments have highlighted the previously unknown relationships between geology and MOF chemistry. Here, we outline examples of MOF structures found in minerals, and note geologically inspired approaches to MOF synthesis, as a means to highlight how the emergent geomimetic concepts in MOF chemistry can lead to advances in the design and synthesis of MOFs. This article is part of the theme issue 'Mineralomimesis: natural and synthetic frameworks in science and technology'.
Collapse
|
3
|
Mottillo C, Friščić T. Advances in Solid-State Transformations of Coordination Bonds: From the Ball Mill to the Aging Chamber. Molecules 2017; 22:molecules22010144. [PMID: 28106754 PMCID: PMC6155591 DOI: 10.3390/molecules22010144] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/24/2016] [Accepted: 12/26/2016] [Indexed: 12/28/2022] Open
Abstract
Controlling the formation of coordination bonds is pivotal to the development of a plethora of functional metal-organic materials, ranging from coordination polymers, metal-organic frameworks (MOFs) to metallodrugs. The interest in and commercialization of such materials has created a need for more efficient, environmentally-friendly routes for making coordination bonds. Solid-state coordination chemistry is a versatile greener alternative to conventional synthesis, offering quantitative yields, enhanced stoichiometric and topological selectivity, access to a wider range of precursors, as well as to molecules and materials not readily accessible in solution or solvothermally. With a focus on mechanochemical, thermochemical and “accelerated aging” approaches to coordination polymers, including pharmaceutically-relevant materials and microporous MOFs, this review highlights the recent advances in solid-state coordination chemistry and techniques for understanding the underlying reaction mechanisms.
Collapse
Affiliation(s)
- Cristina Mottillo
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H1P 1W1, Canada.
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H1P 1W1, Canada.
| |
Collapse
|