1
|
Yadav JK, Singh B, Mishra A, Pal SK, Singh N, Lama P, Indra A, Kumar K. Axial ligand-induced high electrocatalytic hydrogen evolution activity of molecular cobaloximes in homo- and heterogeneous medium. Dalton Trans 2024; 53:16747-16758. [PMID: 39347949 DOI: 10.1039/d4dt00650j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Three new molecular cobaloxime complexes with the general formula [ClCo(dpgH)2L] (1-3), where L1 = N-(4-pyridylmethyl)-1,8-naphthalimide, L2 = 4-bromo-N-(4-pyridylmethyl)-1,8-naphthalimide, L3 = 4-piperidin-N-(4-pyridylmethyl)-1,8-naphthalimide, have been synthesized and characterized by UV-Vis, multinuclear NMR, FT-IR and PXRD spectroscopic techniques. The crystal structures of all complexes have also been reported. The electrocatalytic activity of complexes is investigated under two catalysis conditions: (i) homogeneous conditions in acetonitrile using acetic acid (AcOH) as a proton source and (ii) heterogeneous conditions upon immobilization onto the surface of activated carbon cloth (CC). Complex 3 exhibited high electrocatalytic HER activity under both homogeneous and heterogeneous conditions. It catalyses proton reduction to molecular hydrogen in acetonitrile solution at a lower overpotential (640 mV) with a high turnover frequency (TOF) of 524.57 s-1 and demonstrates good stability in acidic conditions. Furthermore, catalytic (working) electrodes are prepared by immobilizing the complexes onto the surface of activated carbon cloth (CC) for electrocatalytic HER under heterogeneous conditions. An impressive HER performance was again obtained with catalytic electrode 3@CC in 1.0 M KOH, achieving a current density of -10 mA cm-2 at an overpotential of 262 mV. Chronoamperometric (CA) studies showed no significant decay of the initial current density for 10 h, indicating the excellent stability of 3@CC. Additionally, UV-Vis and NMR spectral studies of the recovered catalyst after electrocatalysis revealed no structural changes, demonstrating its robustness under reaction conditions.
Collapse
Affiliation(s)
- Jitendra Kumar Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Baghendra Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP-221005, India.
| | - Anjali Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Sarvesh Kumar Pal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Nanhai Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Prem Lama
- CSIR-Indian Institute of Petroleum, Light Stock Processing Division, Mohkampur, Dehradun 248005, Uttarakhand, India.
| | - Arindam Indra
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP-221005, India.
| | - Kamlesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Haque A, Alenezi KM, Al-Otaibi A, Alsukaibi AKD, Rahman A, Hsieh MF, Tseng MW, Wong WY. Synthesis, Characterization, Cytotoxicity, Cellular Imaging, Molecular Docking, and ADMET Studies of Piperazine-Linked 1,8-Naphthalimide-Arylsulfonyl Derivatives. Int J Mol Sci 2024; 25:1069. [PMID: 38256142 PMCID: PMC10816875 DOI: 10.3390/ijms25021069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
To reduce the mortality and morbidity associated with cancer, new cancer theranostics are in high demand and are an emerging area of research. To achieve this goal, we report the synthesis and characterization of piperazine-linked 1,8-naphthalimide-arylsulfonyl derivatives (SA1-SA7). These compounds were synthesized in good yields following a two-step protocol and characterized using multiple analytical techniques. In vitro cytotoxicity and fluorescent cellular imaging of the compounds were assessed against non-cancerous fibroblast (3T3) and breast cancer (4T1) cell lines. Although the former study indicated the safe nature of the compounds (viability = 82-95% at 1 μg/mL), imaging studies revealed that the designed probes had good membrane permeability and could disperse in the whole cell cytoplasm. In silico studies, including molecular docking, molecular dynamics (MD) simulation, and ADME/Tox results, indicated that the compounds had the ability to target CAIX-expressing cancers. These findings suggest that piperazine-linked 1,8-naphthalimide-arylsulfonyl derivatives are potential candidates for cancer theranostics and a valuable backbone for future research.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (A.H.); (K.M.A.); (A.A.-O.); (A.K.D.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Khalaf M. Alenezi
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (A.H.); (K.M.A.); (A.A.-O.); (A.K.D.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Ahmed Al-Otaibi
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (A.H.); (K.M.A.); (A.A.-O.); (A.K.D.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Abdulmohsen Khalaf Dhahi Alsukaibi
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (A.H.); (K.M.A.); (A.A.-O.); (A.K.D.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Ataur Rahman
- Jamia Senior Secondary School, Jamia Millia Islamia, New Delhi 110025, India;
| | - Ming-Fa Hsieh
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan City 32023, Taiwan;
| | - Mei-Wen Tseng
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan City 32023, Taiwan;
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
3
|
Mateus DBG, Paula de Lima Batista A, da Silva Souza S, Jean-François Demets G, Nikolaou S. Solvatochromism and solution π-stacking of N-(4-pyridyl)-1,8-naphthalimide and its corresponding triruthenium coordination complex. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122420. [PMID: 36738579 DOI: 10.1016/j.saa.2023.122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Due to the scarcity of spectroscopic studies on metal-coordinated naphthalimides, and aiming to investigate fundamental spectroscopic aspects, we have described here the aggregates of N-(4-pyridyl)-1,8-naphthalimide (NI-py) in solution as well as solvatochromism displayed by it and by the coordination compounds [Ru3O(CH3COO)6(NI-py)3]n, n = +1 or 0. Based both on theoretical calculations and luminescence spectra, we demonstrated that in aqueous media, the NI-py π-stacking is thermodynamically favored, suggesting a preferable conformation where the pyridine and naphthalene moieties of two NI-py molecules are parallel to each other, but are not co-planar within an individual molecule, due to steric hindrance. The NI-py ππ* band displayed positive solvatochromism, to which the major contribution was the Catalan's SP parameter (solvent polarizability). This observation is fully consistent with the extended π-electron cloud of the NI-py naphthalene ring. However, a secondary contribution of the SA (solvent acidity) was also observed, owing to the electron pairs available at the N-heteroatom of the pyridine rings and at the carbonyl-group oxygen atoms. Finally, the multiparametric solvent effect analysis indicated that the electronic coupling between coordinated NI-py and the metallic core is modulated by the charge of the [Ru3O(CH3COO)6] core, being higher for the reduced species [Ru3O(CH3COO)6(NI-py)]0. In addition, in this reduced species, there is no overlap between NI-py ππ* and the [Ru3O(CH3COO)6] charge transfer (CT) transitions, leading to the observation of the dependence of the CT energy with the SdP parameter (solvent dipolarity) since the CT transition implies in a charge-separation state.
Collapse
Affiliation(s)
- Douglas Braz Gonçalves Mateus
- Departamento de Química, Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação (LABiQSC(2)), Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901 Ribeirão Preto, SP, Brazil
| | - Ana Paula de Lima Batista
- Departamento de Química, Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação (LABiQSC(2)), Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901 Ribeirão Preto, SP, Brazil; Departamento de Química, Grupo Computacional de Catálise e Espectroscopia (GCCE), Universidade Federal de São Carlos (UFSCar), Rod. Washington Luiz, km 235, CP 676, 13565-905 São Carlos, SP, Brazil
| | - Sâmya da Silva Souza
- Departamento de Química, Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação (LABiQSC(2)), Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901 Ribeirão Preto, SP, Brazil
| | - Grégoire Jean-François Demets
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901 Ribeirão Preto, SP, Brazil
| | - Sofia Nikolaou
- Departamento de Química, Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação (LABiQSC(2)), Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Türkmen G. Pd catalyzed synthesis of 4‐aryl 1,8‐naphthalimide dyes: Determining photophysical parameters and antimicrobial properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Light Triggers the Antiproliferative Activity of Naphthalimide-Conjugated (η 6-arene)ruthenium(II) Complexes. Int J Mol Sci 2022; 23:ijms23147624. [PMID: 35886972 PMCID: PMC9322830 DOI: 10.3390/ijms23147624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022] Open
Abstract
We report the synthesis and characterization of three half-sandwich Ru(II) arene complexes [(η6-arene)Ru(N,N')L][PF6]2 containing arene = p-cymene, N,N' = bipyridine, and L = pyridine meta- with methylenenaphthalimide (C1), methylene(nitro)naphthalimide (C2), or methylene(piperidinyl)naphthalimide (C3). The naphthalimide acts as an antenna for photoactivation. After 3 h of irradiation with blue light, the monodentate pyridyl ligand had almost completely dissociated from complex C3, which contains an electron donor on the naphthalimide ring, whereas only 50% dissociation was observed for C1 and C2. This correlates with the lower wavelength and strong absorption of C3 in this region of the spectrum (λmax = 418 nm) compared with C1 and C2 (λmax = 324 and 323 nm, respectively). All the complexes were relatively non-toxic towards A549 human lung cancer cells in the dark, but only complex C3 exhibited good photocytoxicity towards these cancer cells upon irradiation with blue light (IC50 = 10.55 ± 0.30 μM). Complex C3 has the potential for use in photoactivated chemotherapy (PACT).
Collapse
|
6
|
Holden L, Burke CS, Cullinane D, Keyes TE. Strategies to promote permeation and vectorization, and reduce cytotoxicity of metal complex luminophores for bioimaging and intracellular sensing. RSC Chem Biol 2021; 2:1021-1049. [PMID: 34458823 PMCID: PMC8341117 DOI: 10.1039/d1cb00049g] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022] Open
Abstract
Transition metal luminophores are emerging as important tools for intracellular imaging and sensing. Their putative suitability for such applications has long been recognised but poor membrane permeability and cytotoxicity were significant barriers that impeded early progress. In recent years, numerous effective routes to overcoming these issues have been reported, inspired in part, by advances and insights from the pharmaceutical and drug delivery domains. In particular, the conjugation of biomolecules but also other less natural synthetic species, from a repertoire of functional motifs have granted membrane permeability and cellular targeting. Such motifs can also reduce cytotoxicity of transition metal complexes and offer a valuable avenue to circumvent such problems leading to promising metal complex candidates for application in bioimaging, sensing and diagnostics. The advances in metal complex probes permeability/targeting are timely, as, in parallel, over the past two decades significant technological advances in luminescence imaging have occurred. In particular, super-resolution imaging is enormously powerful but makes substantial demands of its imaging contrast agents and metal complex luminophores frequently possess the photophysical characteristics to meet these demands. Here, we review some of the key vectors that have been conjugated to transition metal complex luminophores to promote their use in intra-cellular imaging applications. We evaluate some of the most effective strategies in terms of membrane permeability, intracellular targeting and what impact these approaches have on toxicity and phototoxicity which are important considerations in a luminescent contrast or sensing agent.
Collapse
Affiliation(s)
- Lorcan Holden
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| | - Christopher S Burke
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| | - David Cullinane
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| | - Tia E Keyes
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| |
Collapse
|
7
|
Maria Ranieri A, Vezzelli M, Leslie KG, Huang S, Stagni S, Jacquemin D, Jiang H, Hubbard A, Rigamonti L, Watkin ELJ, Ogden MI, New EJ, Massi M. Structure illumination microscopy imaging of lipid vesicles in live bacteria with naphthalimide-appended organometallic complexes. Analyst 2021; 146:3818-3822. [PMID: 34036982 DOI: 10.1039/d1an00363a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is a lack of molecular probes for imaging bacteria, in comparison to the array of such tools available for the imaging of mammalian cells. Here, organometallic molecular probes have been developed and assessed for bacterial imaging, designed to have the potential to support multiple imaging modalities. The chemical structure of the probes is designed around a metal-naphthalimide structure. The 4-amino-1,8-naphthalimide moiety, covalently appended through a pyridine ancillary ligand, acts as a luminescent probe for super-resolution microscopy. On the other hand, the metal centre, rhenium(i) or platinum(ii) in the current study, enables techniques such as nanoSIMS. While the rhenium(i) complex was not sufficiently stable to be used as a probe, the platinum(ii) analogue showed good chemical and biological stability. Structured illumination microscopy (SIM) imaging on live Bacillus cereus confirmed the suitability of the probe for super-resolution microscopy. NanoSIMS analysis was used to monitor the uptake of the platinum(ii) complex within the bacteria and demonstrate the potential of this chemical architecture to enable multimodal imaging. The successful combination of these two moieties introduces a platform that could lead to a versatile range of multi-functional probes for bacteria.
Collapse
Affiliation(s)
- Anna Maria Ranieri
- School of Molecular and Life Sciences, Curtin University, Bentley 6102, WA, Australia.
| | - Matteo Vezzelli
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| | - Kathryn G Leslie
- School of Chemistry, The University of Sydney, 2006 NSW, Australia.
| | - Song Huang
- Centre for Microscopy, Characterisation and Analysis, Univsersity of Western Australia, 6009 Perth, WA, Australia
| | - Stefano Stagni
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, viale del Risorgimento 4, 40136 Bologna, Italy
| | - Denis Jacquemin
- Laboratoire CEISAM, UMR CNRS 6230, Universit8 de Nantes, 2 Rue de la HoussiniHre, BP 92208, 44322 Nantes Cedex 3, France
| | - Haibo Jiang
- Centre for Microscopy, Characterisation and Analysis, Univsersity of Western Australia, 6009 Perth, WA, Australia
| | - Alysia Hubbard
- Centre for Microscopy, Characterisation and Analysis, Univsersity of Western Australia, 6009 Perth, WA, Australia
| | - Luca Rigamonti
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| | - Elizabeth L J Watkin
- Curtin Medical School, Curtin University, Kent Street, Bentley 6102 WA, Australia
| | - Mark I Ogden
- School of Molecular and Life Sciences, Curtin University, Bentley 6102, WA, Australia.
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, 2006 NSW, Australia.
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Bentley 6102, WA, Australia.
| |
Collapse
|
8
|
Korzec M, Malarz K, Mrozek-Wilczkiewicz A, Rzycka-Korzec R, Schab-Balcerzak E, Polański J. Live cell imaging by 3-imino-(2-phenol)-1,8-naphthalimides: The effect of ex vivo hydrolysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118442. [PMID: 32408229 DOI: 10.1016/j.saa.2020.118442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
A series of 3-amino-N-substituted-1,8-naphthalimides and their salicylic Schiff base derivatives were synthesized. The structure of the obtained compounds was confirmed using 1H and 13C NMR, FT-IR spectroscopy and elemental analysis and COSY and HMQC for the representative molecules. The photophysical (UV-Vis, PL) and biological properties of all of the prepared compounds were studied. It was found that the amine with the n-hexyl group in EtOH had the highest PL quantum yield (Ф = 85%) compared to the others. Moreover, the chelating properties of the azomethines with the n-hexyl group (1a, 1b, 1c) were tested against various cations (Al3+, Ba2+, Co2+, Cu2+, Cr3+, Fe2+, Fe3+, Mn2+, Ni2+, Pb2+, Sr2+ and Zn2+) in an acetonitrile, acetone and PBS/AC mixture. Compounds that contained the electron withdrawing groups (-Br, -I) had the ability to chelate most of the studied cations, while the unsubstituted derivative chelated only the trivalent cations such as Al3+, Cr3+ and Fe3+ in acetonitrile. The effect of the environment on the keto-enol tautomeric equilibrium was also demonstrated, especially in the case of the derivative with a bromine atom. The biological studies showed that the tested molecules had no cytotoxicity. Additionally, the ability to image intracellular organelles such as the mitochondria and endoplasmic reticulum was revealed. The crucial role of the hydrolysis of imines for cellular imaging was presented.
Collapse
Affiliation(s)
- Mateusz Korzec
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland.
| | - Katarzyna Malarz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Anna Mrozek-Wilczkiewicz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Roksana Rzycka-Korzec
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland
| | - Jarosław Polański
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
9
|
Wells KA, Yarnell JE, Palmer JR, Lee TS, Papa CM, Castellano FN. Energy Migration Processes in Re(I) MLCT Complexes Featuring a Chromophoric Ancillary Ligand. Inorg Chem 2020; 59:8259-8271. [PMID: 32491840 DOI: 10.1021/acs.inorgchem.0c00644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present the synthesis, structural characterization, electronic structure calculations, and ultrafast and supra-nanosecond photophysical properties of a series of five Re(I) bichromophores exhibiting metal to ligand charge transfer (MLCT) excited states based on the general formula fac-[Re(N∧N)(CO)3(PNI-py)]PF6, where PNI-py is 4-piperidinyl-1,8-naphthalimidepyridine and N∧N is a diimine ligand (Re1-5), along with their corresponding model chromophores where 4-ethylpyridine was substituted for PNI-py (Mod1-5). The diimine ligands used include 1,10-phenanthroline (phen, 1), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (bcp, 2), 4,4'-di-tert-butyl-2,2'-bipyridine (dtbb, 3), 4,4'-diethyl ester-2,2'-bipyridine (deeb, 4), and 2,2'-biquinoline (biq, 5). In these metal-organic bichromophores, structural modification of the diimine ligand resulted in substantial changes to the observed energy transfer efficiencies between the two chromophores as a result of the variation in 3MLCT excited-state energies. The photophysical properties and energetic pathways of the model chromophores were investigated in parallel to accurately track the changes that arose from introduction of the organic chromophore pendant on the ancillary ligand. All relevant photophysical and energy transfer processes were probed and characterized using time-resolved photoluminescence spectroscopy, ultrafast and nanosecond transient absorption spectroscopy, and time-dependent density functional theory calculations. Of the five bichromophores in this study, four (Re1-4) exhibited a thermal equilibrium between the 3PNI-py and the 3MLCT excited state, drastically extending the lifetimes of the parent model chromophores.
Collapse
Affiliation(s)
- Kaylee A Wells
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - James E Yarnell
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States.,Department of Chemistry & Chemistry Research Center, United States Air Force Academy, Colorado Springs, Colorado 80840-6230, United States
| | - Jonathan R Palmer
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Tia S Lee
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Christopher M Papa
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
10
|
Day AH, Domarkas J, Nigam S, Renard I, Cawthorne C, Burke BP, Bahra GS, Oyston PCF, Fallis IA, Archibald SJ, Pope SJA. Towards dual SPECT/optical bioimaging with a mitochondrial targeting, 99mTc(i) radiolabelled 1,8-naphthalimide conjugate. Dalton Trans 2020; 49:511-523. [PMID: 31844857 DOI: 10.1039/c9dt04024b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A series of six different 1,8-naphthalimide conjugated dipicolylamine ligands (L1-6) have been synthesised and characterised. The ligands possess a range of different linker units between the napthalimide fluorophore and dipcolylamine chelator which allow the overall lipophilicity to be tuned. A corresponding series of Re(i) complexes have been synthesised of the form fac-[Re(CO)3(L1-6)]BF4. The absorption and luminescence properties of the ligands and Re(i) complexes were dominated by the intramolecular charge transfer character of the substituted fluorophore (typically absorption ca. 425 nm and emission ca. 520 nm). Photophysical assessments show that some of the variants are moderately bright. Radiolabelling experiments using a water soluble ligand variant (L5) were successfully undertaken and optimised with fac-[99mTc(CO)3(H2O)3]+. Confocal fluorescence microscopy showed that fac-[Re(CO)3(L5)]+ localises in the mitochondria of MCF-7 cells. SPECT/CT imaging experiments on naïve mice showed that fac-[99mTc(CO)3(L5)]+ has a relatively high stability in vivo but did not show any cardiac uptake, demonstrating rapid clearance, predominantly via the biliary system along with a moderate amount cleared renally.
Collapse
Affiliation(s)
- Adam H Day
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Cymru/Wales, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lloyd D, Millet CO, Williams CF, Hayes AJ, Pope SJA, Pope I, Borri P, Langbein W, Olsen LF, Isaacs MD, Lunding A. Functional imaging of a model unicell: Spironucleus vortens as an anaerobic but aerotolerant flagellated protist. Adv Microb Physiol 2020; 76:41-79. [PMID: 32408947 DOI: 10.1016/bs.ampbs.2020.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Advances in optical microscopy are continually narrowing the chasm in our appreciation of biological organization between the molecular and cellular levels, but many practical problems are still limiting. Observation is always limited by the rapid dynamics of ultrastructural modifications of intracellular components, and often by cell motility: imaging of the unicellular protist parasite of ornamental fish, Spironucleus vortens, has proved challenging. Autofluorescence of nicotinamide nucleotides and flavins in the 400-580 nm region of the visible spectrum, is the most useful indicator of cellular redox state and hence vitality. Fluorophores emitting in the red or near-infrared (i.e., phosphors) are less damaging and more penetrative than many routinely employed fluors. Mountants containing free radical scavengers minimize fluorophore photobleaching. Two-photon excitation provides a small focal spot, increased penetration, minimizes photon scattering and enables extended observations. Use of quantum dots clarifies the competition between endosomal uptake and exosomal extrusion. Rapid motility (161 μm/s) of the organism makes high resolution of ultrastructure difficult even at high scan speeds. Use of voltage-sensitive dyes determining transmembrane potentials of plasma membrane and hydrogenosomes (modified mitochondria) is also hindered by intracellular motion and controlled anesthesia perturbs membrane organization. Specificity of luminophore binding is always questionable; e.g. cationic lipophilic species widely used to measure membrane potentials also enter membrane-bounded neutral lipid droplet-filled organelles. This appears to be the case in S. vortens, where Coherent Anti-Stokes Raman Scattering (CARS) micro-spectroscopy unequivocally images the latter and simultaneous provides spectral identification at 2840 cm-1. Secondary Harmonic Generation highlights the highly ordered structure of the flagella.
Collapse
Affiliation(s)
- David Lloyd
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom; School of Engineering, Cardiff, Wales, United Kingdom
| | - Coralie O Millet
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | | | - Anthony J Hayes
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Simon J A Pope
- School of Chemistry, Main Building, Cardiff University, Cardiff, Wales, United Kingdom
| | - Iestyn Pope
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Paola Borri
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Wolfgang Langbein
- School of Physics and Astronomy, Cardiff University, Cardiff, Wales, United Kingdom
| | - Lars Folke Olsen
- Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Marc D Isaacs
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Anita Lunding
- Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
12
|
Day AH, Übler MH, Best HL, Lloyd-Evans E, Mart RJ, Fallis IA, Allemann RK, Al-Wattar EAH, Keymer NI, Buurma NJ, Pope SJA. Targeted cell imaging properties of a deep red luminescent iridium(iii) complex conjugated with a c-Myc signal peptide. Chem Sci 2020; 11:1599-1606. [PMID: 32206278 PMCID: PMC7069228 DOI: 10.1039/c9sc05568a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/14/2019] [Indexed: 12/05/2022] Open
Abstract
A nuclear localisation sequence (NLS) peptide, PAAKRVKLD, derived from the human c-Myc regulator gene, has been functionalised with a long wavelength (λ ex = 550 nm; λ em = 677 nm) cyclometalated organometallic iridium(iii) complex to give the conjugate Ir-CMYC. Confocal fluorescence microscopy studies on human fibroblast cells imaged after 18-24 h incubation show that Ir-CMYC concentrations of 80-100 μM promote good cell uptake and nuclear localisation, which was confirmed though co-localisation studies using Hoechst 33342. In comparison, a structurally related, photophysically analogous iridium(iii) complex lacking the peptide sequence, Ir-PYR, showed very different biological behaviour, with no evidence of nuclear, lysosomal or autophagic vesicle localisation and significantly increased toxicity to the cells at concentrations >10 μM that induced mitochondrial dysfunction. Supporting UV-visible and circular dichroism spectroscopic studies show that Ir-PYR and Ir-CMYC display similarly low affinities for DNA (ca. 103 M-1), consistent with electrostatic binding. Therefore the translocation and nuclear uptake properties of Ir-CMYC are attributed to the presence of the PAAKRVKLD nuclear localisation sequence in this complex.
Collapse
Affiliation(s)
- Adam H Day
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Martin H Übler
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Hannah L Best
- School of Biosciences , Cardiff University , Sir Martin Evans Building , Cardiff , UK
| | - Emyr Lloyd-Evans
- School of Biosciences , Cardiff University , Sir Martin Evans Building , Cardiff , UK
| | - Robert J Mart
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Ian A Fallis
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Rudolf K Allemann
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Eman A H Al-Wattar
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Nathaniel I Keymer
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Niklaas J Buurma
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Simon J A Pope
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| |
Collapse
|
13
|
Yarnell JE, Wells KA, Palmer JR, Breaux JM, Castellano FN. Excited-State Triplet Equilibria in a Series of Re(I)-Naphthalimide Bichromophores. J Phys Chem B 2019; 123:7611-7627. [PMID: 31405284 DOI: 10.1021/acs.jpcb.9b05688] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present the synthesis, structural characterization, electronic structure calculations, and the ultrafast and supra-nanosecond photophysical properties of a series of five bichromophores of the general structural formula [Re(5-R-phen)(CO)3(dmap)](PF6), where R is a naphthalimide (NI), phen = 1,10-phenanthroline, and dmap is 4-dimethylaminopyridine. The NI chromophores were systematically modified at their 4-positions with -H (NI), -Br (BrNI), phenoxy (PONI), thiobenzene (PSNI), and piperidine (PNI), rendering a series of metal-organic bichromophores (Re1-Re5, respectively) featuring variability in the singlet and triplet energies in the pendant NI subunit. Five closely related organic chromophores as well as [Re(phen)(CO)3(dmap)](PF6) (Re6) were investigated in parallel to appropriately model the photophysical properties exhibited in the bichromophores. The excited state processes of all molecules in this study were elucidated using a combination of transient absorption spectroscopy and time-resolved photoluminescence (PL) spectroscopy, revealing the kinetics of the energy transfer processes occurring between the appended chromophores. The spectroscopic analysis was further supported by electronic structure calculations which identified the origin of many of the experimentally observed electronic transitions.
Collapse
Affiliation(s)
- James E Yarnell
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States.,Department of Chemistry & Chemistry Research Center, United States Air Force Academy, Colorado Springs, Colorado 80840-6230 United States
| | - Kaylee A Wells
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan R Palmer
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Josué M Breaux
- Department of Chemistry & Chemistry Research Center, United States Air Force Academy, Colorado Springs, Colorado 80840-6230 United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
14
|
Turnbull WL, Murrell E, Bulcan-Gnirss M, Majeed M, Milne M, Luyt LG. A study of 99mTc/Re-tricarbonyl complexes of 4-amino-1,8-naphthalimides. Dalton Trans 2019; 48:14077-14084. [DOI: 10.1039/c9dt01752f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
4-Amino-1,8-naphthalimide ligands were coordinated to fac-Re/99mTc(CO)3 giving complexes of varying charge for applications in fluorescence microscopy and as components of SPECT imaging agents.
Collapse
Affiliation(s)
| | - Emily Murrell
- Department of Chemistry
- University of Western Ontario
- London
- Canada
| | | | - Maryam Majeed
- Department of Chemistry
- University of Western Ontario
- London
- Canada
| | - Mark Milne
- London Regional Cancer Program
- London
- Canada
| | - Leonard G. Luyt
- Department of Chemistry
- University of Western Ontario
- London
- Canada
- London Regional Cancer Program
| |
Collapse
|
15
|
Arumugam R, Shankar B, Shanmugam R, Arumuganathan T, Sathiyendiran M. Phosphine oxide-based tricarbonylrhenium(i) complexes from phosphine/phosphine oxide and dihydroxybenzoquinones. Dalton Trans 2018; 47:13894-13901. [PMID: 30226250 DOI: 10.1039/c8dt02985g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neutral phosphine oxide (P[double bond, length as m-dash]O) donor-based organometallic complexes [{Re(CO)3O[double bond, length as m-dash]PCy3}{μ-DHBQ}{Re(CO)3O[double bond, length as m-dash]PCy3}] (1), [{Re(CO)3O[double bond, length as m-dash]PPh3}{μ-DHBQ}{Re(CO)3O[double bond, length as m-dash]PPh3}] (2), [{Re(CO)3O[double bond, length as m-dash]PCy3}{μ-THQ}{Re(CO)3O[double bond, length as m-dash]PCy3}] (3), [{Re(CO)3O[double bond, length as m-dash]PPh3}{μ-THQ}{Re(CO)3O[double bond, length as m-dash]PPh3}] (4), [{Re(CO)3O[double bond, length as m-dash]PCy3}{μ-CA}{Re(CO)3O[double bond, length as m-dash]PCy3}] (5), and [{Re(CO)3O[double bond, length as m-dash]PPh3}{μ-CA}{Re(CO)3O[double bond, length as m-dash]PPh3}] (6) were assembled from phosphine/phosphine oxide, a dihydroxybenzoquinone donor and Re2(CO)10via a one-pot solvothermal approach. The soft phosphine donor was transformed into a hard phosphine oxide donor during the formation of 1, 3, 4, 5, and 6. The complexes 1-6 were air and moisture stable and were soluble in polar organic solvents. The complexes were characterized by elemental analysis, FT-IR, and NMR spectroscopic methods. The molecular structures of 1, 2, 4, and 6 were analyzed by single-crystal X-ray diffraction analysis. The UV-Visible absorption studies indicated that 1-6 in THF display strong visible light absorption in the range of ∼350-700 nm.
Collapse
Affiliation(s)
- Ramar Arumugam
- Department of Chemistry, Thiagarajar College, Madurai 625 009, Tamil Nadu, India
| | | | | | | | | |
Collapse
|