Ge B, Hu J, Shi Z, Wang H, Xia H, Qiao G. Integration of multi-scale defects for optimizing thermoelectric properties of n-type Cu
1-xCd
xFeS
2 (x = 0-0.1).
NANOSCALE 2019;
11:17340-17349. [PMID:
31517377 DOI:
10.1039/c9nr04693c]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The performance of thermoelectric (TE) materials is strongly influenced by multi-scale defects. Some defects can improve the TE performance but some are unfavorable. Therefore, the multi-scale defects need to be integrated rationally to enhance the TE properties. Here, the defects including atomic-scale point defects, high-density grain boundaries and nano-precipitates were integrated into CuFeS2, an n-type and Earth-abundant TE material. Primitively, a Cd dopant with high scattering factor was introduced to form point defects in Cu1-xCdxFeS2 (x = 0-0.1) according to the calculated scattering parameters. Furthermore, the processes of quenching, annealing, high-energy ball milling (QAH) and sintering were carried out to integrate the multi-scale defects into Cu1-xCdxFeS2. The results suggested that point defects and antisite defects were achieved and the unfavorable Cd'Fe defects were suppressed effectively, leading to a higher electrical conductivity. Moreover, the CdS nano-precipitates played a vital role in carrier filtering to increase the Seebeck coefficient. Meanwhile, the high-density grain boundaries suppressed the lattice thermal conductivity. As a result, a peak ZT value of 0.39 at 723 K was obtained in Cu0.92Cd0.08FeS2, which is the highest value reported so far in the CuFeS2 family.
Collapse