1
|
Kanbe A, Yokoi K, Yamada Y, Tsurui M, Kitagawa Y, Hasegawa Y, Ogata D, Yuasa J, Aoki S. Optical Resolution of Carboxylic Acid Derivatives of Homoleptic Cyclometalated Iridium(III) Complexes via Diastereomers Formed with Chiral Auxiliaries. Inorg Chem 2023; 62:11325-11341. [PMID: 37432912 PMCID: PMC10369494 DOI: 10.1021/acs.inorgchem.3c00685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 07/13/2023]
Abstract
We report on a facile method for the optical resolution of cyclometalated iridium(III) (Ir(III)) complexes via diastereomers formed with chiral auxiliaries. The racemic carboxylic acids of Ir(III) complexes (fac-4 (fac-Ir(ppyCO2H)3 (ppy: 2-phenylpyridine)), fac-6 (fac-Ir(tpyCO2H)3 (tpy: 2-(4'-tolyl)pyridine)), and fac-13 (fac-Ir(mpiqCO2H)3 (mpiq: 1-(4'-methylphenyl)isoquinoline))) were converted into the diastereomers, Δ- and Λ-forms of fac-9 (from fac-6), fac-10 (from fac-4), fac-11 (from fac-6), and fac-14 (from fac-13), respectively, by the condensation with (1R,2R)-1,2-diaminocyclohexane or (1R,2R)-2-aminocyclohexanol. The resulting diastereomers were separated by HPLC (with a nonchiral column) or silica gel column chromatography, and their absolute stereochemistry was determined by X-ray single-crystal structure analysis and CD (circular dichroism) spectra. Spectra of all diastereomers of the Ir(III) complexes are reported. Hydrolysis of the ester moieties of Δ- and Λ-forms of fac-10, fac-11, and fac-14 gave both enantiomers of the corresponding carboxylic acid derivatives in the optically pure forms, Δ-fac and Λ-fac-4, -6, and -13, respectively.
Collapse
Affiliation(s)
- Azusa Kanbe
- Faculty
of Pharmaceutical Science, Tokyo University
of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kenta Yokoi
- Faculty
of Pharmaceutical Science, Tokyo University
of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yasuyuki Yamada
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Research
Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- JST,
PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Makoto Tsurui
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yuichi Kitagawa
- Faculty of
Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-Ku, Sapporo, Hokkaido 060-8628, Japan
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita-21, Nishi-10, Kita-Ku, Sapporo, Hokkaido 001-0021, Japan
| | - Yasuchika Hasegawa
- Faculty of
Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-Ku, Sapporo, Hokkaido 060-8628, Japan
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita-21, Nishi-10, Kita-Ku, Sapporo, Hokkaido 001-0021, Japan
| | - Daiji Ogata
- Faculty
of Science, Tokyo University of Science, 1-3 Kagurazaka,
Shinjuku-ku, Tokyo 162-8601, Japan
| | - Junpei Yuasa
- Faculty
of Science, Tokyo University of Science, 1-3 Kagurazaka,
Shinjuku-ku, Tokyo 162-8601, Japan
| | - Shin Aoki
- Faculty
of Pharmaceutical Science, Tokyo University
of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research
Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research
Institute for Biomedical Science (RIBS), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
2
|
Aoki S, Yokoi K, Hisamatsu Y, Balachandran C, Tamura Y, Tanaka T. Post-complexation Functionalization of Cyclometalated Iridium(III) Complexes and Applications to Biomedical and Material Sciences. Top Curr Chem (Cham) 2022; 380:36. [PMID: 35948812 DOI: 10.1007/s41061-022-00401-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
Abstract
Cyclometalated iridium(III) (Ir(III)) complexes exhibit excellent photophysical properties that include large Stokes shift, high emission quantum yields, and microsecond-order emission lifetimes, due to low-lying metal-to-ligand charge transfer (spin-forbidden singlet-triplet (3MLCT) transition). As a result, analogs have been applied for research not only in the material sciences, such as the development of organic light-emitting diodes (OLEDs), but also for photocatalysts, bioimaging probes, and anticancer reagents. Although a variety of methods for the synthesis and the applications of functionalized cyclometalated iridium complexes have been reported, functional groups are generally introduced to the ligands prior to the complexation with Ir salts. Therefore, it is difficult to introduce thermally unstable functional groups such as peptides and sugars due to the harsh reaction conditions such as the high temperatures used in the complexation with Ir salts. In this review, the functionalization of Ir complexes after the formation of cyclometalated Ir complexes and their biological and material applications are described. These methods are referred to as "post-complexation functionalization (PCF)." In this review, applications of PCF to the design and synthesis of Ir(III) complexes that exhibit blue -red and white color emissions, luminescence pH probes, luminescent probes of cancer cells, compounds that induce cell death in cancer cells, and luminescent complexes that have long emission lifetimes are summarized.
Collapse
Affiliation(s)
- Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan. .,Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan. .,Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan.
| | - Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Yosuke Hisamatsu
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Chandrasekar Balachandran
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan.,Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Yuichi Tamura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Tomohiro Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
3
|
Yamaguchi K, Yokoi K, Umezawa M, Tsuchiya K, Yamada Y, Aoki S. Design, Synthesis, and Anticancer Activity of Triptycene-Peptide Hybrids that Induce Paraptotic Cell Death in Cancer Cells. Bioconjug Chem 2022; 33:691-717. [PMID: 35404581 DOI: 10.1021/acs.bioconjchem.2c00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report on the design and synthesis of triptycene-peptide hybrids (TPHs), 5, syn-6, and anti-6, which are conjugates of a triptycene core unit with two or three cationic KKKGG peptides (K: lysine and G: glycine) through a C8 alkyl chain. It was discovered that syn-6 and anti-6 induce paraptosis, a type of programmed cell death (PCD), in Jurkat cells (leukemia T-lymphocytes). Mechanistic studies indicate that these TPHs induce the transfer of Ca2+ from the endoplasmic reticulum (ER) to mitochondria, a loss of mitochondrial membrane potential (ΔΨm), tethering of the ER and mitochondria, and cytoplasmic vacuolization in the paraptosis processes.
Collapse
Affiliation(s)
- Kohei Yamaguchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Masakazu Umezawa
- Faculty of Advanced Engineering, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Koji Tsuchiya
- Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Yasuyuki Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.,Research Center of Material Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan.,Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan.,Research Institute for Biomedical Science (RIBS), Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| |
Collapse
|
4
|
Yokoi K, Yamaguchi K, Umezawa M, Tsuchiya K, Aoki S. Induction of Paraptosis by Cyclometalated Iridium Complex-Peptide Hybrids and CGP37157 via a Mitochondrial Ca 2+ Overload Triggered by Membrane Fusion between Mitochondria and the Endoplasmic Reticulum. Biochemistry 2022; 61:639-655. [PMID: 35363482 PMCID: PMC9022229 DOI: 10.1021/acs.biochem.2c00061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We previously reported that a cyclometalated iridium (Ir) complex-peptide hybrid (IPH) 4 functionalized with a cationic KKKGG peptide unit on the 2-phenylpyridine ligand induces paraptosis, a relatively newly found programmed cell death, in cancer cells (Jurkat cells) via the direct transport of calcium (Ca2+) from the endoplasmic reticulum (ER) to mitochondria. Here, we describe that CGP37157, an inhibitor of a mitochondrial sodium (Na+)/Ca2+ exchanger, induces paraptosis in Jurkat cells via intracellular pathways similar to those induced by 4. The findings allow us to suggest that the induction of paraptosis by 4 and CGP37157 is associated with membrane fusion between mitochondria and the ER, subsequent Ca2+ influx from the ER to mitochondria, and a decrease in the mitochondrial membrane potential (ΔΨm). On the contrary, celastrol, a naturally occurring triterpenoid that had been reported as a paraptosis inducer in cancer cells, negligibly induces mitochondria-ER membrane fusion. Consequently, we conclude that the paraptosis induced by 4 and CGP37157 (termed paraptosis II herein) proceeds via a signaling pathway different from that of the previously known paraptosis induced by celastrol, a process that negligibly involves membrane fusion between mitochondria and the ER (termed paraptosis I herein).
Collapse
Affiliation(s)
- Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kohei Yamaguchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masakazu Umezawa
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Koji Tsuchiya
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.,Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.,Research Institute for Biomedical Science (RIBS), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
5
|
Bonelli J, Ortega-Forte E, Vigueras G, Bosch M, Cutillas N, Rocas J, Ruiz J, Marchan V. Polyurethane-polyurea hybrid nanocapsules as efficient delivery systems of anticancer Ir(III) metallodrugs. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01542g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclometalated Ir(III) complexes hold great promise as an alternative to platinum metallodrugs for therapy and diagnosis of cancer. However, low aqueous solubility and poor cell membrane permeability difficult in vivo...
Collapse
|
6
|
Aoki S, Yokoi K, Balachandran C, Hisamatsu Y. Synthesis and Functionalization of Cyclometalated Iridium(III) Complexes by Post-Complexation Functionalization for Biomedical and Material Sciences-Development of Intelligent Molecules Using Metal Complex Building Blocks-. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.1113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | | | - Yosuke Hisamatsu
- Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
7
|
Cyclometalated Iridium(III) Complex-Cationic Peptide Hybrids Trigger Paraptosis in Cancer Cells via an Intracellular Ca 2+ Overload from the Endoplasmic Reticulum and a Decrease in Mitochondrial Membrane Potential. Molecules 2021; 26:molecules26227028. [PMID: 34834120 PMCID: PMC8623854 DOI: 10.3390/molecules26227028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/05/2023] Open
Abstract
In our previous paper, we reported that amphiphilic Ir complex–peptide hybrids (IPHs) containing basic peptides such as KK(K)GG (K: lysine, G: glycine) (e.g., ASb-2) exhibited potent anticancer activity against Jurkat cells, with the dead cells showing a strong green emission. Our initial mechanistic studies of this cell death suggest that IPHs would bind to the calcium (Ca2+)–calmodulin (CaM) complex and induce an overload of intracellular Ca2+, resulting in the induction of non-apoptotic programmed cell death. In this work, we conduct a detailed mechanistic study of cell death induced by ASb-2, a typical example of IPHs, and describe how ASb-2 induces paraptotic programmed cell death in a manner similar to that of celastrol, a naturally occurring triterpenoid that is known to function as a paraptosis inducer in cancer cells. It is suggested that ASb-2 (50 µM) induces ER stress and decreases the mitochondrial membrane potential (ΔΨm), thus triggering intracellular signaling pathways and resulting in cytoplasmic vacuolization in Jurkat cells (which is a typical phenomenon of paraptosis), while the change in ΔΨm values is negligibly induced by celastrol and curcumin. Other experimental data imply that both ASb-2 and celastrol induce paraptotic cell death in Jurkat cells, but this induction occurs via different signaling pathways.
Collapse
|
8
|
Haribabu J, Tamura Y, Yokoi K, Balachandran C, Umezawa M, Tsuchiya K, Yamada Y, Karvembu R, Aoki S. Synthesis and Anticancer Properties of Bis‐ and Mono(cationic peptide) Hybrids of Cyclometalated Iridium(III) Complexes: Effect of the Number of Peptide Units on Anticancer Activity. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jebiti Haribabu
- Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki Noda 278-8510 Japan
| | - Yuichi Tamura
- Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki Noda 278-8510 Japan
| | - Kenta Yokoi
- Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki Noda 278-8510 Japan
| | - Chandrasekar Balachandran
- Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki Noda 278-8510 Japan
- Research Institute of Biomedical Science Tokyo University of Science, 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Masakazu Umezawa
- Research Institute for Science and Technology Tokyo University of Science, 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Koji Tsuchiya
- Research Institute for Science and Technology Tokyo University of Science, 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Yasuyuki Yamada
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
- Research Center for Materials Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
- JST, PRESTO, 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Ramasamy Karvembu
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki Noda 278-8510 Japan
- Research Institute for Science and Technology Tokyo University of Science, 2641 Yamazaki Noda Chiba 278-8510 Japan
| |
Collapse
|
9
|
Luengo A, Marzo I, Reback M, Daubit IM, Fernández‐Moreira V, Metzler‐Nolte N, Gimeno MC. Luminescent Bimetallic Ir III /Au I Peptide Bioconjugates as Potential Theranostic Agents. Chemistry 2020; 26:12158-12167. [PMID: 32542887 PMCID: PMC7540463 DOI: 10.1002/chem.202002067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/12/2020] [Indexed: 01/11/2023]
Abstract
Diverse iridium peptide bioconjugates and the corresponding iridium/gold bimetallic complexes have been synthesized starting from a cyclometallated carboxylic acid substituted IrIII complex [Ir(ppy)2 (Phen-5-COO)] by solid phase peptide synthesis (SPPS). The selected peptide sequences were an enkephalin derivative Tyr-Gly-Gly-Phe-Leu together with the propargyl-substituted species Tyr-Gly-Pgl-Phe-Leu to allow gold coordination (Pgl: propyrgyl-glycine, HC≡C-Gly), and a specific short peptide, Ala-Cys-Ala-Phen, containing a cysteine residue. Introduction of the gold center has been achieved via a click reaction with the alkynyl group leading to an organometallic Au-C(triazole) species, or by direct coordination to the sulfur atom of the cysteine. The photophysical properties of these species revealed predominantly an emission originating from the Ir complex, using mixed metal-to-ligand and ligand-to-ligand charge transfer excited states of triplet multiplicity. The formation of the peptide bioconjugates caused a systematic redshift of the emission profiles. Lysosomal accumulation was observed for all the complexes, in contrast to the expected mitochondrial accumulation triggered by the gold complexes. Only the cysteine-containing Ir/Au bioconjugate displayed cytotoxic activity. The absence of activity may be related to the lack of endosomal/lysosomal escape for the cationic peptide conjugates. Interestingly, the different coordination sphere of the gold atom may play a crucial role, as the Au-S(cysteine) bond may be more readily cleaved in a biological environment than the Au-C(triazole) bond, and thus the Au fragment could be released from or trapped in the lysosomes, respectively. This work represents a starting point in the development of bimetallic peptide bioconjugates as theranostics and in the knowledge of factors that contribute to anti-proliferative activity.
Collapse
Affiliation(s)
- Andrés Luengo
- Departamento de Química InorgánicaInstituto de Síntesis QuímicayCatálisis Homogénea (ISQCH)CSIC-Universidad de Zaragoza50009ZaragozaSpain
| | - Isabel Marzo
- Departamento de Bioquímica y Biología CelularUniversidad de Zaragoza-CSIC50009ZaragozaSpain
| | - Matthew Reback
- Inorganic Chemistry I—Bioinorganic ChemistryFaculty of Chemistry and BiochemistryRuhr-Universität BochumUniversitätsstrasse 15044801BochumGermany
| | - Isabelle M. Daubit
- Inorganic Chemistry I—Bioinorganic ChemistryFaculty of Chemistry and BiochemistryRuhr-Universität BochumUniversitätsstrasse 15044801BochumGermany
| | - Vanesa Fernández‐Moreira
- Departamento de Química InorgánicaInstituto de Síntesis QuímicayCatálisis Homogénea (ISQCH)CSIC-Universidad de Zaragoza50009ZaragozaSpain
| | - Nils Metzler‐Nolte
- Inorganic Chemistry I—Bioinorganic ChemistryFaculty of Chemistry and BiochemistryRuhr-Universität BochumUniversitätsstrasse 15044801BochumGermany
| | - M. Concepción Gimeno
- Departamento de Química InorgánicaInstituto de Síntesis QuímicayCatálisis Homogénea (ISQCH)CSIC-Universidad de Zaragoza50009ZaragozaSpain
| |
Collapse
|
10
|
Kazama A, Imai Y, Okayasu Y, Yamada Y, Yuasa J, Aoki S. Design and Synthesis of Cyclometalated Iridium(III) Complexes-Chromophore Hybrids that Exhibit Long-Emission Lifetimes Based on a Reversible Electronic Energy Transfer Mechanism. Inorg Chem 2020; 59:6905-6922. [PMID: 32352765 DOI: 10.1021/acs.inorgchem.0c00363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report on the design and synthesis of triscyclometalated iridium (Ir) complexes that contain aryloxy groups at the end of diamino linkers, which exhibit an extraordinarily long-emission lifetime, and were prepared by regioselective substitution reactions of fac-tris-homoleptic cyclometalated Ir complexes, fac-Ir(tpy)3 (tpy = 2-(4'-tolyl)pyridine). It was found that the Ir(tpy)3 complex, equipped with approximately one to six 6-N,N-dimethylamino-2-naphthoic acid (DMANA) groups through the appropriate alkyl linkers, exhibited remarkably long-emission lifetimes of up to 216 μs in DMSO/H2O at room temperature through a reversible electronic energy transfer effect between the Ir complex core and the organic chromophore moieties; however, under the same conditions, the lifetime of fac-Ir(tpy)3 was 1.4 μs. Regarding the mechanistic aspects, the relationship between the emission lifetimes of the Ir complexes and the structures and numbers of the conjugated chromophores, linker lengths, solvents, positions of the chromophores on the Ir(tpy)3 core, and related items are discussed.
Collapse
Affiliation(s)
- Ayami Kazama
- Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuki Imai
- Department of Applied Chemisty, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yoshinori Okayasu
- Department of Applied Chemisty, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yasuyuki Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.,Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Junpei Yuasa
- Department of Applied Chemisty, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.,Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
11
|
Yokoi K, Balachandran C, Umezawa M, Tsuchiya K, Mitrić A, Aoki S. Amphiphilic Cationic Triscyclometalated Iridium(III) Complex-Peptide Hybrids Induce Paraptosis-like Cell Death of Cancer Cells via an Intracellular Ca 2+-Dependent Pathway. ACS OMEGA 2020; 5:6983-7001. [PMID: 32258934 PMCID: PMC7114882 DOI: 10.1021/acsomega.0c00337] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
We report on the design and synthesis of a green-emitting iridium complex-peptide hybrid (IPH) 4, which has an electron-donating hydroxyacetic acid (glycolic acid) moiety between the Ir core and the peptide part. It was found that 4 is selectively cytotoxic against cancer cells, and the dead cells showed a green emission. Mechanistic studies of cell death indicate that 4 induces a paraptosis-like cell death through the increase in mitochondrial Ca2+ concentrations via direct Ca2+ transfer from ER to mitochondria, the loss of mitochondrial membrane potential (ΔΨm), and the vacuolization of cytoplasm and intracellular organelle. Although typical paraptosis and/or autophagy markers were upregulated by 4 through the mitogen-activated protein kinase (MAPK) signaling pathway, as confirmed by Western blot analysis, autophagy is not the main pathway in 4-induced cell death. The degradation of actin, which consists of a cytoskeleton, is also induced by high concentrations of Ca2+, as evidenced by costaining experiments using a specific probe. These results will be presented and discussed.
Collapse
Affiliation(s)
- Kenta Yokoi
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
| | - Chandrasekar Balachandran
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
| | - Masakazu Umezawa
- Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
| | - Koji Tsuchiya
- Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
| | - Aleksandra Mitrić
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
- Faculty of Technology and Metallurgy, University of Belgrade, 4 Karnegijeva Street, Belgrade 11000, Serbia
| | - Shin Aoki
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
- Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
| |
Collapse
|
12
|
Tan MX, Wang ZF, Qin QP, Huang XL, Zou BQ, Liang H. Complexes of platinum(II/IV) with 2-phenylpyridine derivatives as a new class of promising anti-cancer agents. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
13
|
Design, synthesis, and anticancer activity of iridium(III) complex-peptide hybrids that contain hydrophobic acyl groups at the N-terminus of the peptide units. J Inorg Biochem 2019; 199:110785. [DOI: 10.1016/j.jinorgbio.2019.110785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 02/02/2023]
|
14
|
Qin QP, Zou BQ, Tan MX, Luo DM, Wang ZF, Wang SL, Liu YC. High in vitro anticancer activity of a dinuclear palladium(II) complex with a 2‑phenylpyridine ligand. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Masum AA, Yokoi K, Hisamatsu Y, Naito K, Shashni B, Aoki S. Design and synthesis of a luminescent iridium complex-peptide hybrid (IPH) that detects cancer cells and induces their apoptosis. Bioorg Med Chem 2018; 26:4804-4816. [PMID: 30177492 DOI: 10.1016/j.bmc.2018.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/19/2018] [Accepted: 08/11/2018] [Indexed: 11/29/2022]
Abstract
Tumor necrosis factor related apoptosis inducing ligand (TRAIL) triggers the cell-extrinsic apoptosis pathway by complexation with its signaling receptors such as death receptors (DR4 and DR5). TRAIL is a C3-symmetric type II transmembrane protein, consists of three monomeric units. Cyclometalated iridium(III) complexes such as fac-Ir(tpy)3 (tpy = 2-(4-tolyl)pyridine) also possess a C3-symmetric structure and are known to have excellent luminescence properties. In this study, we report on the design and synthesis of a C3-symmetric and luminescent Ir complex-peptide hybrid (IPH), which contains a cyclic peptide that had been reported to bind to death receptor (DR5). The results of MTT assay of Jurkat, K562 and Molt-4 cells with IPH and co-staining experiments with IPH and an anti-DR5 antibody indicate that IPH binds to DR5 and induces apoptosis in a manner parallel to the DR5 expression level. Mechanistic studies of cell death suggest that apoptosis and necrosis-like cell death are differentiated by the position of the hydrophilic part that connects Ir complex and the peptide units. These findings suggest that IPHs could be a promising tool for controlling apoptosis and necrosis by activation of the extra-and intracellular cell death pathway and to develop new anticancer drugs that detect cancer cells and induce their cell death.
Collapse
Affiliation(s)
- Abdullah-Al Masum
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yosuke Hisamatsu
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kana Naito
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Babita Shashni
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Imaging Frontier Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
16
|
Luminescent Iridium Complex-Peptide Hybrids (IPHs) for Therapeutics of Cancer: Design and Synthesis of IPHs for Detection of Cancer Cells and Induction of Their Necrosis-Type Cell Death. Bioinorg Chem Appl 2018; 2018:7578965. [PMID: 30154833 PMCID: PMC6092981 DOI: 10.1155/2018/7578965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/31/2018] [Indexed: 01/01/2023] Open
Abstract
Death receptors (DR4 and DR5) offer attractive targets for cancer treatment because cancer cell death can be induced by apoptotic signal upon binding of death ligands such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with death receptors. Cyclometalated iridium(III) complexes such as fac-Ir(tpy)3 (tpy = 2-(4-tolyl)pyridine) possess a C3-symmetric structure like TRAIL and exhibit excellent luminescence properties. Therefore, cyclometalated Ir complexes functionalized with DR-binding peptide motifs would be potent TRAIL mimics to detect cancer cells and induce their cell death. In this study, we report on the design and synthesis of C3-symmetric and luminescent Ir complex-peptide hybrids (IPHs), which possess cyclic peptide that had been reported to bind DR5. The results of 27 MHz quartz-crystal microbalance (QCM) measurements of DR5 with IPHs and costaining experiments of IPHs and anti-DR5 antibody, suggest that IPHs bind with DR5 and undergo internalization into cytoplasm, possibly via endocytosis. It was also found that IPHs induce slow cell death of these cancer cells in a parallel manner to the DR5 expression level. These results indicate that IPHs may offer a promising tool as artificial luminescent mimics of death ligands to develop a new category of anticancer agents that detect and kill cancer cells.
Collapse
|
17
|
Tamura Y, Hisamatsu Y, Kazama A, Yoza K, Sato K, Kuroda R, Aoki S. Stereospecific Synthesis of Tris-heteroleptic Tris-cyclometalated Iridium(III) Complexes via Different Heteroleptic Halogen-Bridged Iridium(III) Dimers and Their Photophysical Properties. Inorg Chem 2018; 57:4571-4589. [DOI: 10.1021/acs.inorgchem.8b00323] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yuichi Tamura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yosuke Hisamatsu
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ayami Kazama
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kenji Yoza
- Bruker AXS K.K., 3-9 Moriya-cho, Yokohama, Kanagawa 221-0022, Japan
| | - Kyouhei Sato
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Reiko Kuroda
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Division of Medical-Science-Engineering Cooperation, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Imaging Frontier Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|