1
|
Pavlishchuk AV, Kolotilov SV, Zeller M, Pavlishchuk VV, Pointillart F, Addison AW. Magnetocaloric effect in 1D-polymers bearing 15-metallacrown-5 {GdCu 5} 3+ units and anionic oxalate complexes. Dalton Trans 2024; 53:15713-15724. [PMID: 39253753 DOI: 10.1039/d4dt02413c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Two complexes {[GdCu5(GlyHA)5(H2O)7Cr(C2O4)3]·11.02H2O}n (1) and {{[GdCu5(GlyHA)5(H2O)6]μ2-[Cu(C2O4)2(H2O)]}2μ4-[Cu(C2O4)2]·15.8H2O}n (2), were obtained as outcomes of the reactions between the cationic hexanuclear {GdCu5(GlyHA)5}3+ 15-metallacrown-5 complex (where GlyHA2- = glycinehydroxamate) and the anionic oxalate complexes K3[Cr(C2O4)3] or K2[Cu(C2O4)2]. Both 1 and 2 possess polymeric 1D-chain structures according to X-ray structural analysis. As a consequence of the geometric orientations of the donor atoms in the oxalates from [Cr(C2O4)3]3-, the Cu5 mean planes of neighboring 15-metallacrown-5 units {GdCu5(GlyHA)5}3+ are angled at 75.5° to each other, which leads to formation of a zig-zag motif in the 1D-chains of complex 1. The centrosymmetric complex 2 contains two structurally different bis(oxalato)cuprate anions μ2-[Cu(C2O4)2(H2O)]2-, for one of which, coordination to two adjacent {GdCu5(GlyHA)5}3+ units leads to formation of linear 1D-chains in 2, while the second type, μ4-[Cu(C2O4)2]2-, is coordinated to four {GdCu5(GlyHA)5}3+ units, causing the cross-linking of single 1D-chains into a double-chain 1D coordination polymer. Studies of χMT vs. T data for 1 and 2 in a 2-300 K temperature range revealed the presence of both ferromagnetic and antiferromagnetic interactions amongst paramagnetic centres. The experimental χMT vs. T data for 1 were fitted using a model which takes into account exchange interactions between adjacent copper(II) ions, the Gd-Cu exchange interactions within {GdCu5(GlyHA)5}3+ units and additionally Gd-Cr exchange interactions. Fitting of the χMT vs. T data for 2 was not possible, since coordination of μ4-[Cu(C2O4)2]2- to {GdCu5(GlyHA)5}3+ led to the non-equivalence of several Cu-Cu exchange interactions within the metallacrown units and hence a superfluity of fittable parameters. Complexes 1 and 2 are the first examples of 15-metallacrown-5 complexes demonstrating a magnetocaloric effect (-ΔSM at 13 T reaches 24.26 J K-1 kg-1 at 5 K and 19.14 J K-1 kg-1 at 4 K for 1 and 2, respectively).
Collapse
Affiliation(s)
- Anna V Pavlishchuk
- L.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospect Nauki 31, Kyiv 03028, Ukraine.
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA.
| | - Sergey V Kolotilov
- L.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospect Nauki 31, Kyiv 03028, Ukraine.
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA.
| | - Vitaly V Pavlishchuk
- L.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospect Nauki 31, Kyiv 03028, Ukraine.
| | - Fabrice Pointillart
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France.
| | - Anthony W Addison
- Department of Chemistry, Drexel University, Philadelphia, PA 19104-2816, USA.
| |
Collapse
|
2
|
Nandy R, Jagličić Z, Jana NC, Brandão P, Bustamante F, Aravena D, Panja A. The effect of co-ligands on the performance of single-molecule magnet behaviours in a family of linear trinuclear Zn-Dy-Zn complexes with a compartmental Schiff base. Dalton Trans 2024; 53:13968-13981. [PMID: 39101745 DOI: 10.1039/d4dt01582g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
We present herein magneto-structural studies of three heterometallic Zn2Dy complexes: [Zn2Dy(L)2Cl2(H2O)](ClO4)·4H2O (1), [Zn2Dy(L)2Br2(H2O)](ClO4)·4H2O (2) and [Zn2Dy(L)2(OAc)I(H2O)]I3·4H2O (3), utilizing a new Schiff base ligand, N,N'-bis(3-methoxy-5-methylsalicylidene)-1,2-diaminocyclohexane (H2L). Complexes 1 and 2 exhibit remarkable magnetic relaxation behaviour with relatively high energy barriers in zero field (Ueff: 244 K for 1 and 211 K for 2) and notable hysteresis temperatures, despite the low local geometric symmetry around the central DyIII ions. The SMM performance of these complexes is further enhanced under an applied magnetic field, with Ueff increasing to 309 K for 1 and 269 K for 2, positioning them as elite members within the Zn-Dy SMM family. These findings emphasize the substantial influence of remote modulation on ZnII beyond the first coordination sphere of DyIII ions on their dynamic magnetic relaxation properties. Ab initio studies demonstrate that the relative orientation of the phenoxo-oxygen donor atoms around the DyIII ion is critical for determining the magnetic anisotropy and relaxation dynamics in these systems. Additionally, experimental and theoretical investigations reveal that the coordination of the bridging acetate towards the hard plane, combined with significant distortion from the ideal ZnO2Dy diamond core arrangement caused by the acetate ion, results in low magnetic anisotropy in complex 3, thereby leading to field-induced SMM behaviour. Overall, this study unveils the effects of co-ligands on the SMM performance in a series of linear trinuclear Zn-Dy-Zn complexes, which exhibit low local geometric symmetry around the DyIII centres.
Collapse
Affiliation(s)
- Rakhi Nandy
- Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata-700020, India.
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Narayan Ch Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fabián Bustamante
- Department of Materials Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | - Daniel Aravena
- Department of Materials Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | - Anangamohan Panja
- Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata-700020, India.
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
| |
Collapse
|
3
|
Cu-Ln complexes involving non-symmetrical ligands able to introduce asymmetric centres in the vicinity of Ln ions. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
New Heterotrinuclear Cu IILn IIICu II (Ln = Ho, Er) Compounds with the Schiff Base: Syntheses, Structural Characterization, Thermal and Magnetic Properties. MATERIALS 2022; 15:ma15124299. [PMID: 35744355 PMCID: PMC9231215 DOI: 10.3390/ma15124299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023]
Abstract
New heterotrinuclear complexes with the general formula [Cu2Ln(H2L)(HL)(NO3)2]·MeOH (Ln = Ho (1), Er (2), H4L = N,N′-bis(2,3-dihydroxybenzylidene)-1,3-diaminopropane) were synthesized using compartmental Schiff base ligand in conjugation with auxiliary ligands. The compounds were characterized by elemental analysis, ATR-FTIR spectroscopy, X-ray diffraction, TG, DSC, TG-FTIR and XRD analysis. The N2O4 salen-type ligand coordinates 3d and 4f metal centers via azomethine nitrogen and phenoxo oxygen atoms, respectively, to form heteropolynuclear complexes having CuO2Ln cores. In the crystals 1 and 2, two terminal Cu(II) ions are penta-coordinated with a distorted square-pyramidal geometry and a LnIII ion with trigonal dodecahedral geometry is coordinated by eight oxygen atoms from [CuII(H2L)(NO3)]− and [CuII(HL)(NO3)]2− units. Compounds 1 and 2 are stable at room temperature. During heating, they decompose in a similar way. In the first decomposition step, they lose solvent molecules. The exothermic decomposition of ligands is connected with emission large amounts of gaseous products e.g., water, nitric oxides, carbon dioxide, carbon monoxide. The final solid products of decomposition 1 and 2 in air are mixtures of CuO and Ho2O3/Er2O3. The measurements of magnetic susceptibilities and field dependent magnetization indicate the ferromagnetic interaction between CuII and HoIII ions 1.
Collapse
|
5
|
Dong J, Li R, Sun F, Jiang Y, Wu H. Structures, fluorescence, and superoxide radical scavenging activities of two cd–Ln (Ln = Gd, Er) coordination polymers with an open-chain ether Schiff base and isonicotinate. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2036980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jianping Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| | - Ruixue Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| | - Fugang Sun
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| | - Yuxuan Jiang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| | - Huilu Wu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| |
Collapse
|
6
|
Panja A, Jagličić Z, Herchel R, Brandão P, Pramanik K, Jana NC. Three angular Zn 2Dy complexes showing the effect of remote coordination at Zn and counter ions on slow magnetic relaxation at Dy centres. NEW J CHEM 2022. [DOI: 10.1039/d2nj01759h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three isostructural Zn2Dy complexes displaying the effect of remote coordination at Zn and counter ions on slow magnetic relaxation at Dy centres.
Collapse
Affiliation(s)
- Anangamohan Panja
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata 700020, India
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Kuheli Pramanik
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata 700020, India
| | - Narayan Ch. Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
| |
Collapse
|
7
|
Panja A, Jagličić Z, Herchel R, Brandão P, Jana NC. Influence of bridging and chelating co-ligands on the distinct single-molecule magnetic behaviours in ZnDy complexes. NEW J CHEM 2022. [DOI: 10.1039/d2nj03793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four ZnDy complexes display an effect of bridging/chelating co-ligands on distinct single-molecule magnetic behaviours, relaxing through single to multi relaxation channels.
Collapse
Affiliation(s)
- Anangamohan Panja
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB, 721152, India
- Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata, 700020, India
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Narayan Ch. Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB, 721152, India
| |
Collapse
|
8
|
Panja A, Jagličić Z, Herchel R, Brandão P, Pramanik K, Jana NC. The first exploration of coordination chemistry using a methyl substituted o-vanillin based ligand: an example starting with Dy 4/Zn 2Dy 2 systems displaying slow relaxation of magnetization. NEW J CHEM 2022. [DOI: 10.1039/d1nj05717k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two butterfly-shaped Dy4 and Zn2Dy2 complexes displaying slow relaxation of magnetization have been synthesized from a new methyl substituted o-vanillin based ligand, enlarging the scope for finding better SMMs.
Collapse
Affiliation(s)
- Anangamohan Panja
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata, 700020, India
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Kuheli Pramanik
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata, 700020, India
| | - Narayan Ch. Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
| |
Collapse
|
9
|
When the Metal Makes the Difference: Template Syntheses of Tridentate and Tetradentate Salen-Type Schiff Base Ligands and Related Complexes. CRYSTALS 2021. [DOI: 10.3390/cryst11050483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The reaction of organic molecules mediated by a metal center (template synthesis) can result in a final connectivity that may differ from the one obtained in the absence of the metal. The condensation of carbonyl fragments with primary amines form C=N iminic bonds, the so-called Schiff bases, which can act as ligands for the templating metal center by means of the lone pair on the nitrogen atom. This review focuses on the template methods for the reaction between a carbonyl compound (mainly salicylaldehyde) and a primary aliphatic diamine able to prevent the double condensation on both amine groups and obtain tridentate N2O ligands. These adducts, still having one free amino group, can further react, yielding tetradentate salen-type Schiff base ligands. A screening over the transition metals able to show such a template effect will be presented, with particular attention to copper(II), together with their peculiar reactivity and the available crystal structure of the metal complexes and related coordination geometries.
Collapse
|
10
|
Mirdya S, Basak T, Chattopadhyay S. Photocatalytic ability of two hetero-tetranuclear complexes with CuO2Cd cores to degrade methylene blue: Influence of their structures on activity. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.05.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Template directed synthesis of half condensed Schiff base complexes of Cu(II) and Co(III): Structural and magnetic studies. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.02.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
A Family of
$$\left\{ {{\text{Ni}}^{\text{II}}_{2} {\text{Ln}}^{\text{III}}_{2} } \right\}$$
Ni
2
II
Ln
2
III
Butterfly Complexes: Lanthanide Contraction Effect on the Structures Magnetic Properties. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1447-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Reaction of Non-Symmetric Schiff Base Metallo-Ligand Complexes Possessing an Oxime Function with Ln Ions. INORGANICS 2018. [DOI: 10.3390/inorganics6010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|