1
|
Sari AAA, Alzahrani SO, Alatawi ISS, Aljohani MM, Shah R, Saad FA, Khalil MA, El-Metwaly NM. An effective procedure used metal-organic framework for determination of cadmium ions in real tap water and human blood plasma samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124989. [PMID: 39154403 DOI: 10.1016/j.saa.2024.124989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
A newly developed 2H5MA-MOF sensor by covalently linking NH2-MIL-53(Al) with 2'-Hydroxy-5'-methylacetophenon, designed for highly sensitive and selective detection of Cd2+ ions using fluorometric methods. Detailed structural and morphological analyses confirmed the sensor's unique properties. It demonstrated an impressive linear detection range from 0 to 2 ppm, with an exceptionally low detection limit of 5.77 × 10-2 ppm and a quantification limit of 1.75 × 10-1 ppm, indicating its high sensitivity (R2 = 0.9996). The sensor also responded quickly, detecting Cd2+ within just 30 s at pH 4. We successfully tested it on real samples of tap water and human blood plasma, achieving recovery rates between 96 % and 104 %. The accuracy of these findings was further validated by comparison with ICP-OES. Overall, the 2H5MA-MOF sensor shows great potential for fast, ultra-sensitive, and reliable detection of Cd2+ ions, making it a promising tool for environmental and biomedical applications.
Collapse
Affiliation(s)
- Abdullah Ali A Sari
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Seraj Omar Alzahrani
- Chemistry Department, College of Science, Taibah University, Madinah 42353, Saudi Arabia
| | - Ibrahim S S Alatawi
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Meshari M Aljohani
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Reem Shah
- Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fawaz A Saad
- Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - M A Khalil
- Egyptian Propylene and Polypropylene Company, Port Said 42511, Egypt
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
2
|
Yakout AA, Basha MT, Shahat A. Robust and Ultrasensitive Chemosensor Based on Bifunctionalized MIL‐101(Al) for Fluorescent Detection of Ferric Ions in Serum and Pharmaceutical Tablets. ChemistrySelect 2022. [DOI: 10.1002/slct.202202110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Amr A. Yakout
- Department of Chemistry College of Science University of Jeddah Jeddah Saudi Arabia
- Department of Chemistry Faculty of Science Alexandria University Alexandria Egypt
| | - Maram T. Basha
- Department of Chemistry College of Science University of Jeddah Jeddah Saudi Arabia
| | - Ahmed Shahat
- Department of Chemistry Faculty of Science Suez University 43518 Suez Egypt
| |
Collapse
|
3
|
Luo XL, Lan D, Lin Y, Pan Z, Yang T, Lu R. A two-dimensional framework with U-shaped Cu4I4 Cluster linked by semi-rigid ligand: Synthesis, crystal structure and Luminescent Properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Liu Z, Li N, Liu P, Qin Z, Jiao T. Highly Sensitive Detection of Iron Ions in Aqueous Solutions Using Fluorescent Chitosan Nanoparticles Functionalized by Rhodamine B. ACS OMEGA 2022; 7:5570-5577. [PMID: 35187371 PMCID: PMC8851898 DOI: 10.1021/acsomega.1c07071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 05/04/2023]
Abstract
Detection of iron ions in aqueous solutions is of significant importance because of their important role in the environment and the human body. Herein, a fluorescent rhodamine B-functionalized chitosan nanoparticles probe is reported for the efficient detection of iron ions. The chitosan nanospheres-rhodamine B (CREN) was prepared by grafting rhodamine B onto the surface of chitosan nanospheres through an amidation reaction. The as-prepared CREN fluorescent probes exhibit high fluorescence intensity under ultraviolet light. When iron ions are added to the CREN solution, they can be coordinated with weak-field ligands such as N and O on the surface of chitosan nanoparticles (CSNP) by a high-spin method. The self-assembly of Fe3+ on the surface of the CREN led to the generation of single electrons and the presence of high paramagnetism, resulting in fluorescence quenching. The quenching effect of Fe3+ on the CREN fluorescent probe can achieve the efficient detection of Fe3+, and the detection limit reaches 10-5 mol/mL. Moreover, this fluorescence quenching effect of Fe3+ on the CREN fluorescent probe is specific, which could not be disturbed by other metal ions and counteranions.
Collapse
Affiliation(s)
- Zhiwei Liu
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Na Li
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Ping Liu
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zhihui Qin
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
5
|
Daga P, Manna P, Majee P, Singha DK, Hui S, Ghosh AK, Mahata P, Mondal SK. Response of a Zn(II)-based metal-organic coordination polymer towards trivalent metal ions (Al 3+, Fe 3+ and Cr 3+) probed by spectroscopic methods. Dalton Trans 2021; 50:7388-7399. [PMID: 33969864 DOI: 10.1039/d1dt00729g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new zinc-based two-dimensional coordination polymer, [Zn(5-AIP)(Ald-4)]·H2O (5-AIP = 5-amino isophthalate, Ald-4 = aldrithiol-4), 1, has been synthesized at room temperature by the layer diffusion technique. Single-crystal X-ray diffraction analysis of 1 showed a two-dimensional bilayer structure. An aqueous suspension of 1 upon excitation at 300 nm displayed an intense blue emission at 403 nm. The luminescence spectra were interestingly responsive and selective to Al3+, Cr3+ and Fe3+ ions even in the presence of other interfering ions. The calculated detection limits for Al3+, Cr3+ and Fe3+ were 0.35 μM ([triple bond, length as m-dash]8.43 ppb), 0.46 μM ([triple bond, length as m-dash]22.6 ppb) and 0.30 μM ([triple bond, length as m-dash]15.85 ppb), respectively. Notably, with the cumulative addition of Al3+ ions, the luminescence intensity at 403 nm decreased steadily with a gradual red shift up to 427 nm. Afterward, this red shifted peak showed a turn-on effect upon further addition of Al3+ ions. On the other hand, for Cr3+ and Fe3+ ions, there was only drastic luminescence quenching and a large red shift up to 434 nm. This indicated the formation of a complex between 1 and these metal ions, which was also supported by the UV-Visible absorption spectra of 1 that showed the appearance of a new band at 280 nm in the presence of these three metal ions. The FTIR spectra revealed that these ions interacted with the carboxylate oxygen atom of 5-AIP and the nitrogen atom of the Ald-4 ligand in the structure. The luminescence lifetime decay analysis manifested that a charge-transfer type complex was formed between 1 and Cr3+ and Fe3+ ions that resulted in huge luminescence quenching due to the efficient charge transfer involving the vacant d-orbitals, whereas for Al3+ ions having no vacant d-orbital, turn-on of luminescence occurred because of the increased rigidity of 1 upon complexation.
Collapse
Affiliation(s)
- Pooja Daga
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal, India.
| | - Priyanka Manna
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, West Bengal, India.
| | - Prakash Majee
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal, India.
| | - Debal Kanti Singha
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal, India. and Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, West Bengal, India.
| | - Sayani Hui
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, West Bengal, India.
| | - Ananta Kumar Ghosh
- Department of Chemistry, Burdwan Raj College, Burdwan, Burdwan-713104, West Bengal, India
| | - Partha Mahata
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, West Bengal, India.
| | - Sudip Kumar Mondal
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal, India.
| |
Collapse
|
6
|
pH stable cationic luminescence Metal−Organic framework material with nitrate guests as high selective sensor for detecting 2, 4, 6-trinitrophenol. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Daga P, Majee P, Singha DK, Manna P, Hui S, Ghosh AK, Mahata P, Mondal SK. Dramatic luminescence signal from a Co(ii)-based metal–organic compound due to the construction of charge-transfer bands with Al3+ and Fe3+ ions in water: steady-state and time-resolved spectroscopic studies. NEW J CHEM 2020. [DOI: 10.1039/d0nj00295j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Co(ii)-based metal–organic compound exhibits luminescence turn-on by Al3+ and quenching by Fe3+ due to the formation of charge-transfer complexes/adducts.
Collapse
Affiliation(s)
- Pooja Daga
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | - Prakash Majee
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | - Debal Kanti Singha
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | - Priyanka Manna
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Sayani Hui
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | | | - Partha Mahata
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Sudip Kumar Mondal
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| |
Collapse
|
8
|
Tetra(4-imidazoylphenyl)ethylene based metal-organic frameworks for highly selective detection of TNP and Fe3+. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.120993] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Guo P, Sun J, Xu Z, Liu M, Li H, Wang Y. A Zn-based coordination polymer as a highly selective multi-responsive luminescent sensor for Fe3+ cation and Cr2O72−/CrO42− anions. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.02.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Zhan Z, Liang X, Zhang X, Jia Y, Hu M. A water-stable europium-MOF as a multifunctional luminescent sensor for some trivalent metal ions (Fe3+, Cr3+, Al3+), PO43− ions, and nitroaromatic explosives. Dalton Trans 2019; 48:1786-1794. [DOI: 10.1039/c8dt04653k] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Eu-MOF having a layered structure exhibits high sensitivity, selectivity, and recyclability towards sensing Fe3+, Cr3+, Al3+, and PO43− ions and TNP.
Collapse
Affiliation(s)
- Zhiying Zhan
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Xiaoyu Liang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Xiaolei Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Yuejiao Jia
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Ming Hu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| |
Collapse
|
11
|
Jia L, Xue Z, Zhu RR, Yan T, Wang YN, Zhang SS, Geng X, Du L, Zhao QH. A novel fluorescence phenomenon caused by amine induced ion-exchange between Cd 2+ and Fe 3+ ions. RSC Adv 2019; 9:39854-39857. [PMID: 35541376 PMCID: PMC9076181 DOI: 10.1039/c9ra07559c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/28/2019] [Indexed: 11/21/2022] Open
Abstract
A 3D metal–organic framework {[Cd(5-Brp)(dpa)]·0.5DMF·H2O}n (1) was successfully synthesized and characterized, which markedly recognized iron ions under the induction of an amino group. With the concentration of Fe3+ increasing, the emission of 1 first declined, then enhanced with a red shift and was finally quenched, which was different from the reference compound [Cd(5-Brp)(bpp)(H2O)]n (2). This result drew our attention to amine induced ion-exchange. This peculiar phenomenon inspired us to construct an effective ion detector. A 3D metal–organic framework {[Cd(5-Brp)(dpa)]·0.5DMF·H2O}n (1) was successfully synthesized and characterized, which markedly recognized iron ions under the induction of an amino group.![]()
Collapse
Affiliation(s)
- Lei Jia
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- Yunnan University
- Kunming 650091
- People's Republic of China
- School of Chemical Science and Engineering
| | - Zhe Xue
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- Yunnan University
- Kunming 650091
- People's Republic of China
- School of Chemical Science and Engineering
| | - Rong-Rong Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- Yunnan University
- Kunming 650091
- People's Republic of China
- School of Chemical Science and Engineering
| | - Tong Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- Yunnan University
- Kunming 650091
- People's Republic of China
- School of Chemical Science and Engineering
| | - Yu-Na Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- Yunnan University
- Kunming 650091
- People's Republic of China
- School of Chemical Science and Engineering
| | - Suo-Shu Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- Yunnan University
- Kunming 650091
- People's Republic of China
- School of Chemical Science and Engineering
| | - Xiao Geng
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- Yunnan University
- Kunming 650091
- People's Republic of China
- School of Chemical Science and Engineering
| | - Lin Du
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- Yunnan University
- Kunming 650091
- People's Republic of China
- School of Chemical Science and Engineering
| | - Qi-Hua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- Yunnan University
- Kunming 650091
- People's Republic of China
- School of Chemical Science and Engineering
| |
Collapse
|