1
|
Szafoni E, Lewandowski D, Gruszczyński M, Broniarz K, Stachowiak-Dłużyńska H, Kuciński K, Hreczycho G. Streamlining Si-O bond formation through cobalt-catalyzed dehydrocoupling. Chem Commun (Camb) 2024; 60:10886-10889. [PMID: 39253800 DOI: 10.1039/d4cc04144e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Herein we report a strategy for the synthesis of organosilicons, including siloxanes, silyl ethers, and aminosilanes, via Co-catalyzed dehydrogenative coupling between hydrosilanes and nucleophiles. This discovery represents an expansion of the synthetic toolkit for organosilicon synthesis, forging Si-O and Si-N bonds in the presence of cobalt complexes with salen-type ligands.
Collapse
Affiliation(s)
- Ewelina Szafoni
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland.
| | - Dariusz Lewandowski
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland.
| | - Marcin Gruszczyński
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland.
| | - Konstancja Broniarz
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland.
| | - Hanna Stachowiak-Dłużyńska
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland.
| | - Krzysztof Kuciński
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland.
| | - Grzegorz Hreczycho
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland.
| |
Collapse
|
2
|
Watanabe N, Imoto H, Naka K. Synthesis of a series of octaalkoxy-substituted cage silsesquioxanes catalyzed by zinc acetate. Dalton Trans 2024; 53:14986-14994. [PMID: 38817162 DOI: 10.1039/d4dt01008f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Octaalkoxy-substituted polyhedral oligomeric silsesquioxane (8RO-POSS) is an attractive starting material for producing silicone resins. However, polymers derived from 8RO-POSS via the sol-gel process have seldom been reported owing to their synthetic difficulty. In this study, we attempted to use zinc acetate (Zn(OAc)2) as the catalyst for the synthesis of a series of 8RO-POSS from octahydrido-POSS (8H-POSS). The reaction conditions were optimized using heptaisobutyl monohydride-POSS (7iBu1H-POSS) as a model reaction. The desired product was obtained in 96% yield under optimized conditions. The alkoxylation of 8H-POSS was performed using methanol (MeOH), ethanol (EtOH), isopropyl alcohol (i-PrOH), and tert-butyl alcohol (t-BuOH) in the presence of Zn(OAc)2 as the catalyst. Although octamethoxy-POSS (8MeO-POSS) was isolated in the presence of a byproduct, octaethoxy-POSS (8EtO-POSS) and octaisopropoxy-POSS (8iPrO-POSS) were obtained in high yields. The degree of alkoxylation was 55% in the case of using t-BuOH. The structures of 8MeO-POSS, 8EtO-POSS, and 8iPrO-POSS were confirmed by FT-IR, 1H-, and 29Si-NMR and MALDI-TOF-MS analyses. Compared to the random silicate obtained by base-treated tetramethoxysilane (TMOS), base-treated 8EtO-POSS and 8iPrO-POSS showed that the cage structures were maintained even after the formation of condensed silicate structures via a condensation reaction.
Collapse
Affiliation(s)
- Naoki Watanabe
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- JNC Petrochemical Corporation, 5-1, Goikaigan, Ichihara, Chiba 290-8551, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
3
|
Huang WS, Xu H, Yang H, Xu LW. Catalytic Synthesis of Silanols by Hydroxylation of Hydrosilanes: From Chemoselectivity to Enantioselectivity. Chemistry 2024; 30:e202302458. [PMID: 37861104 DOI: 10.1002/chem.202302458] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/21/2023]
Abstract
As a crucial class of functional molecules in organosilicon chemistry, silanols are found valuable applications in the fields of modern science and will be a potentially powerful framework for biologically active compounds or functional materials. It has witnessed an increasing demand for non-natural organosilanols, as well as the progress in the synthesis of these structural features. From the classic preparative methods to the catalytic selective oxidation of hydrosilanes, electrochemical hydrolysis of hydrosilanes, and then the construction of the most challenging silicon-stereogenic silanols. This review summarized the progress in the catalyzed synthesis of silanols via hydroxylation of hydrosilanes in the last decade, with a particular emphasis on the latest elegant developments in the desymmetrization strategy for the enantioselective synthesis of silicon-stereogenic silanols from dihydrosilanes.
Collapse
Affiliation(s)
- Wei-Sheng Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Hao Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
4
|
Prieto-Pascual U, Rodríguez-Diéguez A, Freixa Z, Huertos MA. Tailor-Made Synthesis of Hydrosilanols, Hydrosiloxanes, and Silanediols Catalyzed by di-Silyl Rhodium(III) and Iridium(III) Complexes. Inorg Chem 2023; 62:3095-3105. [PMID: 36757389 PMCID: PMC10863934 DOI: 10.1021/acs.inorgchem.2c03953] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 02/10/2023]
Abstract
Siloxanes and silanols containing Si-H units are important building blocks for the synthesis of functionalized siloxane materials, and their synthesis is a current challenge. Herein, we report the selective synthesis of hydrosilanols, hydrosiloxanes, and silanodiols depending on the nature of the catalysts and the silane used. Two neutral ({MCl[SiMe2(o-C6H4PPh2)]2}; M = Rh, Ir) and two cationic ({M[SiMe2(o-C6H4PPh2)]2(NCMe)}[BArF4]; M = Rh, Ir) have been synthesized and their catalytic behavior toward hydrolysis of secondary silanes has been described. Using the iridium complexes as precatalysts and diphenylsilane as a substrate, the product obtained is diphenylsilanediol. When rhodium complexes are used as precatalysts, it is possible to selectively obtain silanediol, hydrosilanol, and hydrosiloxane depending on the catalysts (neutral or cationic) and the silane substituents.
Collapse
Affiliation(s)
- Unai Prieto-Pascual
- Facultad
de Química, Universidad del País
Vasco (UPV/EHU), 20018 San Sebastián, Spain
| | | | - Zoraida Freixa
- Facultad
de Química, Universidad del País
Vasco (UPV/EHU), 20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Miguel A. Huertos
- Facultad
de Química, Universidad del País
Vasco (UPV/EHU), 20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
5
|
Duszczak J, Mrzygłód A, Mituła K, Dutkiewicz M, Januszewski R, Rzonsowska M, Dudziec B, Nowicki M, Kubicki M. Distinct insight into the use of difunctional double-decker silsesquioxanes as building blocks for alternating A–B type macromolecular frameworks. Inorg Chem Front 2023. [DOI: 10.1039/d2qi02161g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A distinct look at known, hydrosilylation reactions used for the formation of DDSQ-based linear A–B alternating macromolecular systems with DPn > 1000 is presented. Selected physicochemical properties of obtained hybrid co-polymers were determined.
Collapse
Affiliation(s)
- Julia Duszczak
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Aleksandra Mrzygłód
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Katarzyna Mituła
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Michał Dutkiewicz
- Adam Mickiewicz University Foundation, Poznan Science and Technology Park, Rubiez 46, 61-612 Poznan, Poland
| | - Rafał Januszewski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Monika Rzonsowska
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Beata Dudziec
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Marek Nowicki
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Institute of Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| |
Collapse
|
6
|
Kuciński K, Stachowiak-Dłużyńska H, Hreczycho G. Catalytic silylation of O–nucleophiles via Si–H or Si–C bond cleavage: A route to silyl ethers, silanols and siloxanes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214456] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Jagannathan JR, Targos K, Franz AK. Synthesis of Functionalized Silsesquioxane Nanomaterials by Rhodium‐Catalyzed Carbene Insertion into Si−H Bonds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jake R. Jagannathan
- Department of Chemistry University of California, Davis One Shields Avenue Davis CA USA
| | - Karina Targos
- Department of Chemistry University of California, Davis One Shields Avenue Davis CA USA
| | - Annaliese K. Franz
- Department of Chemistry University of California, Davis One Shields Avenue Davis CA USA
| |
Collapse
|
8
|
Mrzygłód A, Kubicki M, Dudziec B. Vinyl- and chloromethyl-substituted mono-T 8 and double-decker silsesquioxanes as specific cores to low generation dendritic systems. Dalton Trans 2021; 51:1144-1149. [PMID: 34939635 DOI: 10.1039/d1dt04012j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the series of G1 and G1.5 dendritic systems with mono-T8 SQs and DDSQ as specific types of dendron and dendrimer cores, respectively. The trivinyl- and tri(chloromethyl)-derivatives were obtained via hydrolytic condensation followed by the hydrosilylation reaction, optimized to yield selectively β-products. Their structures were confirmed by spectroscopic and XRD analyses. It is the first example of double-decker SQs used as cores for the construction of a low generation of dendrimer featuring specific dumbbell frameworks expanding in two or four directions.
Collapse
Affiliation(s)
- Aleksandra Mrzygłód
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland. .,Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland.
| | - Beata Dudziec
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland. .,Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| |
Collapse
|
9
|
Jagannathan JR, Targos K, Franz AK. Synthesis of Functionalized Silsesquioxane Nanomaterials by Rhodium-Catalyzed Carbene Insertion into Si-H bonds. Angew Chem Int Ed Engl 2021; 61:e202110417. [PMID: 34693589 DOI: 10.1002/anie.202110417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/10/2021] [Indexed: 12/12/2022]
Abstract
We report carbene insertion into Si-H bonds of polyhedral oligomeric silsesquioxanes (POSS) for the synthesis of highly functionalized siloxane nanomaterials. Dirhodium(II) carboxylates catalyze insertion of aryl-diazoacetates as carbene precursors to afford POSS structures containing both ester and aryl groups as orthogonal functional handles for further derivatization of POSS materials. Four diverse and structurally varied silsesquioxane core scaffolds with one, three, or eight Si-H bonds were evaluated with diazo reactants to produce a total of 20 new POSS compounds. Novel diazo compounds containing a fluorinated octyl group and boron-dipyrromethene (BODIPY) chromophore demonstrate the use of highly functionalized substrates. Transformations of aryl(ester)-functionalized POSS compounds derived from this method are demonstrated, including ester hydrolysis and Suzuki-Miyaura cross-coupling.
Collapse
Affiliation(s)
- Jake R Jagannathan
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Karina Targos
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Annaliese K Franz
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
| |
Collapse
|
10
|
Jurásková A, Skov AL, Brook MA. Mild Route To Convert SiH Compounds to Their Alkoxy Analogues. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alena Jurásková
- The Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 227, Kgs. Lyngby DK-2800, Denmark
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street W., Hamilton, Ontraio L8S 4M1, Canada
| | - Anne Ladegaard Skov
- The Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 227, Kgs. Lyngby DK-2800, Denmark
| | - Michael A. Brook
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street W., Hamilton, Ontraio L8S 4M1, Canada
| |
Collapse
|
11
|
Grzelak M, Marciniec B. Synthesis of Bifunctional Silsesquioxanes and Spherosilicates with Organogermyl Functionalities. Chem Asian J 2020; 15:2437-2441. [PMID: 32538545 DOI: 10.1002/asia.202000596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/09/2020] [Indexed: 11/09/2022]
Abstract
In this paper we present the synthesis of mixed bifunctional compounds of T8 H8 silsesquioxane and spherosilicate (HSiMe2 O)8 Si8 O12 derivatives via platinum-catalyzed hydrosilylation of alkenylgermanes and olefins. To the best of our knowledge, this is the first literature example of bifunctional compounds with organogermyl functionalities. Eleven mixed systems with a variety of substituents (Si-H, alkyl, germyl, epoxy, and hydroxy) were prepared and fully characterized by NMR spectroscopy. Additionally, our research includes a real-time FT-IR study of the synthesis of these bifunctional compounds of the general formula (R)8-m (GeR'3 (CH2 )n+2 R)m Si8 O12 . and (R''(CH2 )2 R)8-m (GeR'3 (CH2 )2 R)m Si8 O12 where m∼4.
Collapse
Affiliation(s)
- Magdalena Grzelak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.,Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Bogdan Marciniec
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.,Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| |
Collapse
|
12
|
Kuciński K, Stachowiak H, Hreczycho G. Silylation of Alcohols, Phenols, and Silanols with Alkynylsilanes - an Efficient Route to Silyl Ethers and Unsymmetrical Siloxanes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Krzysztof Kuciński
- Faculty of Chemistry; Adam Mickiewicz University in Poznań; Ul. Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| | - Hanna Stachowiak
- Faculty of Chemistry; Adam Mickiewicz University in Poznań; Ul. Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| | - Grzegorz Hreczycho
- Faculty of Chemistry; Adam Mickiewicz University in Poznań; Ul. Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
- Center for Advanced Technologies; Adam Mickiewicz University; Ul. Uniwersytetu Poznańskiego 10 61-614 Poznań Poland
| |
Collapse
|
13
|
Januszewski R, Dutkiewicz M, Kownacki I, Marciniec B. The effect of organosilicon modifier structure on the efficiency of the polybutadiene hydrosilylation process. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01376e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Real-time FT-IR spectroscopy permitted us to determine the influence of steoelectronic properties of functional groups on hydrosilylation. This allowed the synthesis of polybutadienes equipped with attractive silicon-based functional groups.
Collapse
Affiliation(s)
- Rafał Januszewski
- Faculty of Chemistry
- Adam Mickiewicz University in Poznań
- 61-614 Poznan
- Poland
- Center for Advanced Technology
| | - Michał Dutkiewicz
- Center for Advanced Technology
- Adam Mickiewicz University in Poznan
- 61-614 Poznan
- Poland
| | - Ireneusz Kownacki
- Faculty of Chemistry
- Adam Mickiewicz University in Poznań
- 61-614 Poznan
- Poland
- Center for Advanced Technology
| | - Bogdan Marciniec
- Center for Advanced Technology
- Adam Mickiewicz University in Poznan
- 61-614 Poznan
- Poland
| |
Collapse
|
14
|
Kuciński K, Hreczycho G. A Highly Effective Route to Si-O-Si Moieties through O-Silylation of Silanols and Polyhedral Oligomeric Silsesquioxane Silanols with Disilazanes. CHEMSUSCHEM 2019; 12:1043-1048. [PMID: 30536641 DOI: 10.1002/cssc.201802757] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 06/09/2023]
Abstract
A simple and highly practical catalyst-free O-silylation of silanols with commercially available disilazanes has been developed under mild conditions. In the case of polyhedral oligomeric silsesquioxane (POSS) silanols and some other silanols, it was necessary to use catalytic amounts of inexpensive Bi(OTf)3 as additional catalyst. This efficient chlorine-free protocol involves the synthesis of a wide range of important organosilicon derivatives such as unsymmetrical disiloxanes and functionalized silsesquioxanes.
Collapse
Affiliation(s)
- Krzysztof Kuciński
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89b, 61-614, Poznań, Poland
| | - Grzegorz Hreczycho
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89b, 61-614, Poznań, Poland
| |
Collapse
|