1
|
Zhang J, Chen R, Chen S, Yu D, Elkamchouchi DH, Alqahtani MS, Assilzadeh H, Huang Z, Huang Y. Application of lipid and polymeric-based nanoparticles for treatment of inner ear infections via XGBoost. ENVIRONMENTAL RESEARCH 2023; 239:117115. [PMID: 37717809 DOI: 10.1016/j.envres.2023.117115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/26/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Taking hearing loss as a prevalent sensory disorder, the restricted permeability of blood flow and the blood-labyrinth barrier in the inner ear pose significant challenges to transporting drugs to the inner ear tissues. The current options for hear loss consist of cochlear surgery, medication, and hearing devices. There are some restrictions to the conventional drug delivery methods to treat inner ear illnesses, however, different smart nanoparticles, including inorganic-based nanoparticles, have been presented to regulate drug administration, enhance the targeting of particular cells, and decrease systemic adverse effects. Zinc oxide nanoparticles possess distinct characteristics that facilitate accurate drug delivery, improved targeting of specific cells, and minimized systemic adverse effects. Zinc oxide nanoparticles was studied for targeted delivery and controlled release of therapeutic drugs within specific cells. XGBoost model is used on the Wideband Absorbance Immittance (WAI) measuring test after cochlear surgery. There were 90 middle ear effusion samples (ages = 1-10 years, mean = 34.9 months) had chronic middle ear effusion for four months and verified effusion for seven weeks. In this research, 400 sets underwent wideband absorbance imaging (WAI) to assess inner ear performance after surgery. Among them, 60 patients had effusion Otitis Media with Effusion (OME), while 30 ones had normal ears (control). OME ears showed significantly lower absorbance at 250, 500, and 1000 Hz than controls (p < 0.001). Absorbance thresholds >0.252 (1000 Hz) and >0.330 (2000 Hz) predicted a favorable prognosis (p < 0.05, odds ratio: 6). It means that cochlear surgery and WAI showed high function in diagnosis and treatment of inner ear infections. Regarding the R2 0.899 and RMSE 1.223, XGBoost shows excellent specificity and sensitivity for categorizing ears as having effusions absent or present or partial or complete flows present, with areas under the curve (1-0.944).
Collapse
Affiliation(s)
- Jie Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang,325000, China
| | - Ru Chen
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shuainan Chen
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang,325000, China
| | - Die Yu
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang,325000, China
| | - Dalia H Elkamchouchi
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Hamid Assilzadeh
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India.
| | - Zhongguan Huang
- Department of Otolaryngology, Pingyang Affiliated Hospital of Wenzhou Medical University, Pingyang, Zhejiang, 325400, China.
| | - Yideng Huang
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang,325000, China.
| |
Collapse
|
2
|
Ramírez O, Bonardd S, Saldías C, Kroff M, O'Shea JN, Díaz Díaz D, Leiva A. Bimetallic NiPt nanoparticles-enhanced catalyst supported on alginate-based biohydrogels for sustainable hydrogen production. Int J Biol Macromol 2023; 225:494-502. [PMID: 36400214 DOI: 10.1016/j.ijbiomac.2022.11.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Alginate hydrogel beads were loaded with bimetallic NiPt nanoparticles by in situ reduction of the respective polymer matrix containing precursor metallic ions using a NaBH4 aqueous solution. The alginate hydrogel beads loaded with NiPt nanoparticles were characterized by TEM, AAS, FT-IR, TGA, XPS, and oscillatory rheometry. The prepared hybrid hydrogels were proven to be effective as catalytic materials for the hydrolysis of ammonia borane (AB) for quantitative hydrogen generation using catalytic loadings of 0.1 mol%. In addition, the reaction mechanism of the hydrolytic reaction using NiPt loaded alginate hydrogel beads was determined by Langmuir-Hinshelwood model. The experimental results showed that the reaction mechanism consisted of an initial fast adsorption of reactants at the surface of the nanoparticles, followed by a rate-limiting surface reaction. The NiPt nanoalloys exhibited an enhanced behavior for hydrogen generation with a maximum TOF of 84.1 min-1, almost 71 % higher compared to monometallic platinum atoms, and likely related to a synergistic interaction between both metals. Finally, the hydrogel matrix enabled the material to be easily recovered from the reaction medium and reused in further catalytic cycles without desorption of active nanoparticles from the material.
Collapse
Affiliation(s)
- Oscar Ramírez
- Departamento de Química Física, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Química Orgánica, Universidad de la Laguna, La Laguna, Spain; Instituto Universitario de Bio-Orgánica Antonio González, Universidad de la Laguna, La Laguna, Spain
| | - Sebastian Bonardd
- Departamento de Química Orgánica, Universidad de la Laguna, La Laguna, Spain; Instituto Universitario de Bio-Orgánica Antonio González, Universidad de la Laguna, La Laguna, Spain
| | - César Saldías
- Departamento de Química Física, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Macarena Kroff
- Departamento de Química Inorgánica, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - James N O'Shea
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
| | - David Díaz Díaz
- Departamento de Química Orgánica, Universidad de la Laguna, La Laguna, Spain; Instituto Universitario de Bio-Orgánica Antonio González, Universidad de la Laguna, La Laguna, Spain; Institute of Organic Chemistry, University of Regensburg, Universitästr. 31, Regensburg 93053, Germany.
| | - Angel Leiva
- Departamento de Química Física, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
3
|
Han W, Xiang W, Shi J, Ji Y. Recent Advances in the Heterogeneous Photocatalytic Hydroxylation of Benzene to Phenol. Molecules 2022; 27:molecules27175457. [PMID: 36080224 PMCID: PMC9457663 DOI: 10.3390/molecules27175457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Phenol is an important chemical material that is widely used in industry. Currently, phenol is dominantly produced by the well−known three−step cumene process, which suffers from severe drawbacks. Therefore, developing a green, sustainable, and economical strategy for the production of phenol directly from benzene is urgently needed. In recent years, the photocatalytic hydroxylation of benzene to phenol, which is economically feasible and could be performed under mild conditions, has attracted more attention, and development of highly efficient photocatalyst would be a key issue in this field. In this review, we systematically introduce the recent achievements of photocatalytic hydroxylation of benzene to phenol from 2015 to mid−2022, and various heterogeneous photocatalysts are comprehensively reviewed, including semiconductors, polyoxometalates (POMs), graphitic carbon nitride (g−C3N4), metal–organic frameworks (MOFs), carbon materials, and some other types of photocatalysts. Much effort is focused on the physical and chemical approaches for modification of these photocatalysts. The challenges and future promising directions for further enhancing the catalytic performances in photocatalytic hydroxylation of benzene are discussed in the end.
Collapse
Affiliation(s)
- Weiwei Han
- Correspondence: ; Tel.: +86-29-8838-2703
| | | | | | | |
Collapse
|
4
|
|
5
|
Wang S, Shi L, Bai X, Li Q, Ling C, Wang J. Highly Efficient Photo-/Electrocatalytic Reduction of Nitrogen into Ammonia by Dual-Metal Sites. ACS CENTRAL SCIENCE 2020; 6:1762-1771. [PMID: 33145413 PMCID: PMC7596869 DOI: 10.1021/acscentsci.0c00552] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Indexed: 05/02/2023]
Abstract
The photo-/electrocatalytic nitrogen reduction reaction (NRR) is an up and coming method for sustainable NH3 production; however, its practical application is impeded by poor Faradaic efficiency originating from the competing hydrogen evolution reaction (HER) and the inert N≡N triple bond activation. In this work, we put forth a method to boost NRR through construction of donor-acceptor couples of dual-metal sites. The synergistic effect of dual active sites can potentially break the metal-based activity benchmark toward efficient NRR. By systematically evaluating the stability, activity, and selectivity of 28 heteronuclear dual-atom catalysts (DACs) of M1M2/g-C3N4 candidates, FeMo/g-C3N4 is screened out as an effective electrocatalyst for NRR with a particularly low limiting potential of -0.23 V for NRR and a rather high potential of -0.79 V for HER. Meanwhile, TiMo/g-C3N4, NiMo/g-C3N4, and MoW/g-C3N4 with suitable band edge positions and visible light absorption can be applied to NRR as photocatalysts. The excellent catalytic activity is attributed to the tunable composition of metal dimers, which play an important role in modulating the binding strength of the target intermediates. This work may pave a new way for the rational design of heteronuclear DACs with high activity and stability for NRR, which may also apply to other reactions.
Collapse
Affiliation(s)
- Shiyan Wang
- School of Physics, Southeast University, Nanjing 211189, China
| | - Li Shi
- School of Physics, Southeast University, Nanjing 211189, China
| | - Xiaowan Bai
- School of Physics, Southeast University, Nanjing 211189, China
| | - Qiang Li
- School of Physics, Southeast University, Nanjing 211189, China
| | - Chongyi Ling
- School of Physics, Southeast University, Nanjing 211189, China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
6
|
Fang W, Yan D, Tao R, Sun Z, Li F, Xu L. Polyoxometalates acting as a hole-transfer mediator and crystallization accelerant in a perovskite photoanode for the photoelectrocatalytic oxidation of benzene into phenol. Dalton Trans 2020; 49:10084-10090. [PMID: 32661533 DOI: 10.1039/d0dt00969e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Organic metal halide perovskite (OMHP) material shows promising applications in the photoelectrocatalytic field, but its efficiencies are unsatisfactory due to the bulk and surface carrier recombination. In this work, we used dual polyoxometalates (C4H9N)3PW12O40 and [Ag10[{Co(H2O)3}2{CoBi2W19O66(OH)4}] to modify the OMHP photoanode; the former acted to improve the quality of the perovskite film and the latter could facilitate hole transfer. Such dual modifications effectively reduce carrier recombination and thus obviously boost photoelectrocatalytic efficiency. Hence, we explored the photoelectrocatalytic oxidation of benzene into phenol in aqueous solution by using the modified OMHP photoanode. The yield of phenol in the reaction using the modified OMHP photoanode reached about 31.8%, which was obviously superior to that using the pure OMHP photoanode. Furthermore, we carried out radical scavenger studies to investigate the active species involved in the photoelectrocatalytic benzene oxidation reaction, and thus proposed the plausible mechanism of the photoelectrocatalytic oxidation of benzene into phenol over the OMHP photoanode. These results provide new insights into the development of high performance OMHP photoanodes for photoelectrocatalytic organic transformation.
Collapse
Affiliation(s)
- Wencheng Fang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | | | | | | | | | | |
Collapse
|
7
|
Zhang Y, Liu G. Development of highly efficient and durable reduced graphene oxide decorated with Ag/Co3O4 nanocomposite towards photocatalytic C H activation. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Rai VK, Verma F, Mahata S, Bhardiya SR, Singh M, Rai A. Metal Doped-C3N4/Fe2O4: Efficient and Versatile Heterogenous Catalysts for Organic Transformations. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190709113758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The polymeric graphitic carbon nitride (g-C3N4) has been one of the interesting earth abundant elements. Though g-C3N4 finds application as a photocatalyst, its photocatalytic behaviour is limited because of low efficiency, mainly due to rapid charge recombination. To overcome this problem, several strategies have been developed including doping of metal/non-metal in the cavity of g-C3N4. Moreover, the CoFe2O4 NPs have been used in many organic transformations because of its high surface area and easy separation due to its magnetic nature. This review describes the role of cobalt ferrite as magnetic nanoparticles and metal-doped carbon nitride as efficient heterogeneous catalysts for new carbon-carbon and carbon-hetero atom bond formation followed by heterocyclization. Reactions which involved new catalysts for selective activation of readily available substrates has been reported herein. Since nanoparticles enhance the reactivity of catalyst due to higher catalytic area, they have been employed in various reactions such as addition reaction, C-H activation reaction, coupling reaction, cyclo-addition reaction, multi-component reaction, ring-opening reaction, oxidation reaction and reduction reactions etc. The driving force for choosing this topic is based-on huge number of good publications including different types of spinels/metal doped-/graphitic carbon nitride reported in the literature and due to interest of synthetic community in recent years. This review certainly will represent the present status in organic transformation and for exploring further their catalytic efficiency to new organic transformations involving C-H activation reaction through coupling, cyclo-addition, multi-component, ring-opening, oxidation and reduction reactions.
Collapse
Affiliation(s)
- Vijai K. Rai
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur (C.G.)-495009, India
| | - Fooleswar Verma
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur (C.G.)-495009, India
| | - Suhasini Mahata
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur (C.G.)-495009, India
| | - Smita R. Bhardiya
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur (C.G.)-495009, India
| | - Manorama Singh
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur (C.G.)-495009, India
| | - Ankita Rai
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110027, India
| |
Collapse
|
9
|
Devi M, Das B, Barbhuiya MH, Bhuyan B, Dhar SS, Vadivel S. Fabrication of nanostructured NiO/WO3with graphitic carbon nitride for visible light driven photocatalytic hydroxylation of benzene and metronidazole degradation. NEW J CHEM 2019. [DOI: 10.1039/c9nj02904d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fabrication of a novel NiO/WO3nanohybrid modified graphitic carbon nitride nanosheets with enhanced photocatalytic activity towards photocatalytic hydroxylation of benzene and degradation of a pharmaceutical waste metronidazole.
Collapse
Affiliation(s)
- Meghali Devi
- Department of Chemistry
- National Institute of Technology
- Cachar
- India
| | - Bishal Das
- Department of Chemistry
- National Institute of Technology
- Cachar
- India
| | | | - Bishal Bhuyan
- Department of Chemistry
- National Institute of Technology
- Cachar
- India
| | | | | |
Collapse
|