1
|
Schulz J, Clauss R, Kazimir A, Holzknecht S, Hey-Hawkins E. On the Edge of the Known: Extremely Electron-Rich (Di)Carboranyl Phosphines. Angew Chem Int Ed Engl 2023; 62:e202218648. [PMID: 36573025 DOI: 10.1002/anie.202218648] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Indexed: 12/28/2022]
Abstract
The syntheses of the first B9-connected carboranylphosphines (B9-Phos) featuring two carboranyl moieties as well as access to B9-Phos ligands with bulky electron-donating substituents, previously deemed unattainable, is reported. The electrochemical properties of the B9-Phos ligands were investigated, revealing the ability of the mesityl derivatives to form stabilized phosphoniumyl radical cations. The B9-Phos ligands display an extremely electron-releasing character surpassing that of alkyl phosphines and commonly used N-heterocyclic carbenes. This is demonstrated by their very small Tolman electronic parameters (TEPs) as well as extremely low P-Se coupling constants. Cone angles and buried volumes attest to the high steric demand exerted by the (di)carboranyl phosphines. The dicarboranyl phosphine AuI complexes show superior catalytic performance in the hydroamination of alkynes compared to the monocarboranyl phosphine analogs.
Collapse
Affiliation(s)
- Jan Schulz
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Reike Clauss
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Aleksandr Kazimir
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Sieglinde Holzknecht
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| |
Collapse
|
2
|
Hill NDD, Lilienthal E, Bender CO, Boeré RT. Accurate Crystal Structures of C 12H 9CN, C 12H 8(CN) 2, and C 16H 11CN Valence Isomers Using Nonspherical Atomic Scattering Factors. J Org Chem 2022; 87:16213-16229. [DOI: 10.1021/acs.joc.2c01706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Nathan D. D. Hill
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W, Lethbridge, AB, Canada T1K 3M4
- The Canadian Centre for Research in Advanced Fluorine Technologies (C-CRAFT), University of Lethbridge, 4401 University Dr. W, Lethbridge, AB, Canada T1K 3M4
| | - Elaura Lilienthal
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W, Lethbridge, AB, Canada T1K 3M4
- The Canadian Centre for Research in Advanced Fluorine Technologies (C-CRAFT), University of Lethbridge, 4401 University Dr. W, Lethbridge, AB, Canada T1K 3M4
| | - Christopher O. Bender
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W, Lethbridge, AB, Canada T1K 3M4
| | - René T. Boeré
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W, Lethbridge, AB, Canada T1K 3M4
- The Canadian Centre for Research in Advanced Fluorine Technologies (C-CRAFT), University of Lethbridge, 4401 University Dr. W, Lethbridge, AB, Canada T1K 3M4
| |
Collapse
|
3
|
Synthesis, characterization and anticancer activities of cationic η6-p-cymene ruthenium(II) complexes containing phosphine and nitrogenous ligands. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Rösel S, Schreiner PR. Computational Chemistry as a Conceptual Game Changer: Understanding the Role of London Dispersion in Hexaphenylethane Derivatives (Gomberg Systems). Isr J Chem 2022. [DOI: 10.1002/ijch.202200002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sören Rösel
- Institute of Organic Chemistry Justus Liebig University Heinrich-Buff-Ring 17, Twitter: @prsgroupjlu 35392 Giessen Germany
| | - Peter R. Schreiner
- Institute of Organic Chemistry Justus Liebig University Heinrich-Buff-Ring 17, Twitter: @prsgroupjlu 35392 Giessen Germany
| |
Collapse
|
5
|
Clauss R, Baweja S, Gelman D, Hey-Hawkins E. Heterobimetallic Pd/Mn and Pd/Co complexes as efficient and stereoselective catalysts for sequential Cu-free Sonogashira coupling-alkyne semi-hydrogenation reactions. Dalton Trans 2021; 51:1344-1356. [PMID: 34889939 DOI: 10.1039/d1dt03757a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A series of heterobimetallic PdII/MII complexes (MII = Mn, Co) were synthesised and tested as precatalysts for sequential Sonogashira coupling-alkyne semi-hydrogenation reactions to form Z-aryl alkenes. The carbometalated heterobimetallic PdII/CoII complex CoPdL3' demonstrated an apparent cooperative effect compared to the corresponding monometallic counterparts. This compound was identified as a potent single-molecule catalyst for the one-pot Cu-free Sonogashira coupling of aryl bromides with terminal alkynes followed by chemo- and stereoselective semi-hydrogenation of the alkyne intermediate using NH3·BH3 as a hydrogen source. Furthermore, different aromatic substrates have been tested to show the generality of the reaction for the synthesis of Z-alkenes, including biologically active combretastatin A-4. In addition, the homogeneous nature of the catalytically active species was demonstrated.
Collapse
Affiliation(s)
- Reike Clauss
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, D-04103 Leipzig, Germany.
| | - Saral Baweja
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, D-04103 Leipzig, Germany.
| | - Dmitri Gelman
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, D-04103 Leipzig, Germany.
| |
Collapse
|
6
|
Gildenast H, Garg F, Englert U. Sterically Crowded Tris(2-(trimethylsilyl)phenyl)phosphine - Is it Still a Ligand? Chemistry 2021; 28:e202103555. [PMID: 34856017 PMCID: PMC9303349 DOI: 10.1002/chem.202103555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 11/05/2022]
Abstract
Tris(2-(trimethylsilyl)phenyl)phosphine, P( o -TMSC 6 H 4 ) 3 , was synthesised and characterised in solution and in the solid state. The large steric bulk prevents most reactions of the phosphorus donor and makes the compound air stable both in the solid state as well as in solution. This shielded phosphine can still undergo three reactions, namely protonation, oxidation to the phosphine oxide under harsh conditions and complexation to Au I , thus forming a complex with linear coordination. Unexpectedly, complexation was unsuccessful with a range of other metal cations. Neither Pd II , Pt II , Zn II nor Hg II reacted and even the remaining coinage metal cations Cu I and Ag I could not be coordinated. Both the parent molecule as well as the reaction products were structurally characterised by single crystal X-ray di raction, and the conformational change of geometry required to accommodate the additional atoms was analysed in detail. Apart from chemical oxidation with H 2 O 2 , P( o -TMSC 6 H 4 ) 3 displays reversible electrochemical oxidation with a potential not unlike the one of sterically unencumbered phosphines for which the oxidation is usually not reversible. P( o -TMSC 6 H 4 ) 3 can thus be considered a model compound for the investigation of the electronic properties of sterically unencumbered phosphines.
Collapse
Affiliation(s)
- Hans Gildenast
- RWTH Aachen: Rheinisch-Westfalische Technische Hochschule Aachen, Institut für Anorganische Chemie, GERMANY
| | - Felix Garg
- RWTH: Rheinisch-Westfalische Technische Hochschule Aachen, Institut für Anorganische Chemie, GERMANY
| | - Ulli Englert
- RWTH Aachen, Institute for Inorganic Chemistry, Landoltweg 1, 52074, Aachen, GERMANY
| |
Collapse
|
7
|
Dasgupta A, Richards E, Melen RL. Frustrated Radical Pairs: Insights from EPR Spectroscopy. Angew Chem Int Ed Engl 2021; 60:53-65. [PMID: 32931604 PMCID: PMC7883636 DOI: 10.1002/anie.202010633] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/29/2022]
Abstract
Progress in frustrated Lewis pair (FLP) chemistry has revealed the importance of the main group elements in catalysis, opening new avenues in synthetic chemistry. Recently, new reactivities of frustrated Lewis pairs have been uncovered that disclose that certain combinations of Lewis acids and bases undergo single-electron transfer (SET) processes. Here an electron can be transferred from the Lewis basic donor to a Lewis acidic acceptor to generate a reactive frustrated radical pair (FRP). This minireview aims to showcase the recent advancements in this emerging field covering the synthesis and reactivities of frustrated radical pairs, with extensive highlights of the results from Electron Paramagnetic Resonance (EPR) spectroscopy to explain the nature and stability of the different radical species observed.
Collapse
Affiliation(s)
- Ayan Dasgupta
- School of ChemistryCardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Emma Richards
- School of ChemistryCardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Rebecca L. Melen
- School of ChemistryCardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| |
Collapse
|
8
|
Guimarães IDL, Marszaukowski F, Ribeiro R, de Lazaro SR, de Oliveira KM, Batista AA, Castellen P, Wrobel E, Garcia JR, Boeré RT, Wohnrath K. Synthesis and characterization of η6-p-cymene ruthenium(II) complexes containing alkyl- and methoxy-substituted triarylphosphines. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2020.121599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Dasgupta A, Richards E, Melen RL. Frustrated Radical Pairs: Insights from EPR Spectroscopy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ayan Dasgupta
- School of Chemistry Cardiff Catalysis Institute Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Emma Richards
- School of Chemistry Cardiff Catalysis Institute Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Rebecca L. Melen
- School of Chemistry Cardiff Catalysis Institute Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| |
Collapse
|