1
|
Zurkova M, Šloufová I, Gajdošová V, Vlčková B. Plasmon-Catalysed Decarboxylation of Dicarboxybipyridine Ligands in Ru(II) Complexes Chemisorbed on Ag Nanoparticles: Conditions, Proposed Mechanism and Role of Ag(0) Adsorption Sites. Phys Chem Chem Phys 2022; 24:15034-15047. [DOI: 10.1039/d2cp00765g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plasmon-catalyzed decarboxylation reactions of Ru(II) bis(2,2‘-bipyridine)(4,4‘-dicarboxy-bipyridine) denoted as Ru(bpy)2(dcbpy) and Ru(II) tris(4,4‘-dicarboxy-bipyridine) denoted as Ru(dcbpy)3 complexes in hydrosol systems with Ag nanoparticles (NPs) conditioned by the presence of Ag(0) adsorption...
Collapse
|
2
|
Liu X, Li Y, Yang Q, Cai H, Wang L, Zhao X. Improving the antioxidant activity of natural antioxidant honokiol by introducing the amino group. J Mol Model 2021; 27:350. [PMID: 34757484 DOI: 10.1007/s00894-021-04977-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Exploring and synthesizing the compounds with stronger antioxidant activity have always been the goal of researchers. Herein, the substitution effects of the amino (NH2-) group with the excellent electron-donating ability in different positions on the antioxidant activity of Honokiol (Hon) were systematically explored by using the quantum chemistry calculation based on the density functional theory method. The three possible antioxidant mechanisms of Hon and its four NH2-substituted derivatives (Hon1-Hon4), containing the hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET), were explored in depth considering the gas and solvent phases. In addition, the frontier molecular orbital energies, natural bond orbital (NBO) charge population, and global descriptive parameters were used to study their antioxidant activity. The results indicate that compared with the original molecule Hon, the NH2 substituents would have the stronger antioxidant activity. Moreover, the radical scavenging process of Hon and its derivatives has a disposition to the HAT and SPLET mechanisms in the gas and solvent phases, respectively. Meaningfully, owing to the lowest bond dissociation enthalpy and proton affinity values, Hon4 would show the most prominent antioxidant activity by comparison with the other compounds. In conclusion, this work will provide the purposeful reference for designing and synthesizing the antioxidants with more outstanding performance.
Collapse
Affiliation(s)
- Xiaohu Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China.,Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Yuanzuo Li
- College of Science, Northeast Forestry University, Harbin, 150040, China
| | - Qilei Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China.,Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Hongda Cai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China.,Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Lingling Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China. .,Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Xiuhua Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China. .,Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
3
|
Hayashi Y, Ohara K, Taki R, Saeki T, Yamaguchi K. Crystalline sponge-laser desorption ionization (CS-LDI) of unsaturated cyclic organic compounds encapsulated in different electronic environments in pores. Anal Chim Acta 2019; 1064:80-86. [PMID: 30982521 DOI: 10.1016/j.aca.2019.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/02/2019] [Accepted: 03/07/2019] [Indexed: 01/06/2023]
Abstract
We have developed laser desorption ionization mass spectrometry (LDI-MS) of organic molecules encapsulated in a crystalline sponge (CS). Cyclic organic compounds 1,2,3,4,5-pentamethylcyclopentadiene, zerumbone, and muscone were encapsulated in CS as guest regardless of guest crystallization. Single-crystal X-ray analysis closely scrutinized the position of the guest in the pore and the interaction between the guest and the CS framework. After single-crystal X-ray analysis, the same single crystal was subjected to LDI-MS. Ionization efficiency differed markedly depending on whether π-π interaction existed or not. It is obvious that π-π interaction is the key to transferring laser energy from the CS framework to the guest for the ionization of molecule encapsulated in CS. The results suggest the importance of controlling the positions of analyte and matrix as well as noncovalent interactions, such as hydrogen bonding interaction, electrostatic interaction, and so on.
Collapse
Affiliation(s)
- Yukako Hayashi
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Kazuaki Ohara
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan.
| | - Rika Taki
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Tomomi Saeki
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan.
| |
Collapse
|