1
|
Fagnano A, Capocasa G, Frateloreto F, Latini L, Mortera SL, Lanzalunga O, Di Stefano S, Olivo G. Deciphering the Role of Crown-ether Receptor Orientation in C-H Oxidation Catalyzed by Supramolecular Nonheme Fe IV(O) Complexes. Chemistry 2024:e202404041. [PMID: 39737808 DOI: 10.1002/chem.202404041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/01/2025]
Abstract
The outstanding efficiency and selectivity of enzymatic reactions, such as C-H oxidation by nonheme iron oxygenases, stems from a precise control of substrate positioning inside the active site. The resulting proximity between a specific moiety (a certain C-H bond) and the reactant (a FeIV(O) active species) translates into higher rates and selectivity, that can be in part replicated also with artificial supramolecular catalysts. However, structural modification of the position and orientation of the binding site both in enzymes and in artificial catalysts often leads to significant variations in reactivity that can be difficult to rationalize due to the system's complexity. Herein, we quantitatively analyzed the impact of such a structural modification (namely receptor orientation) on the C-H oxidation reactivity (kinetics, Effective Molarity) and selectivity by comparing simple supramolecular FeIV(O) models. Overall, we did not observe significant differences in reaction rates, but we noticed slight changes in the selectivity profile. These results indicate that, when a crown-ether is employed as a recognition site, the key ingredient for enhanced reactivity is the presence of the supramolecular receptor itself rather than its exact orientation, providing a guide for the rational design of supramolecular catalysts.
Collapse
Affiliation(s)
- Alessandro Fagnano
- Dipartimento di Chimica and Istituto ISB-CNR, Università La Sapienza di Roma, P.le Aldo, Moro 5, 00185, Rome, Italy
| | - Giorgio Capocasa
- Dipartimento di Chimica and Istituto ISB-CNR, Università La Sapienza di Roma, P.le Aldo, Moro 5, 00185, Rome, Italy
| | - Federico Frateloreto
- Dipartimento di Chimica and Istituto ISB-CNR, Università La Sapienza di Roma, P.le Aldo, Moro 5, 00185, Rome, Italy
| | - Leonardo Latini
- Dipartimento di Chimica and Istituto ISB-CNR, Università La Sapienza di Roma, P.le Aldo, Moro 5, 00185, Rome, Italy
| | | | - Osvaldo Lanzalunga
- Dipartimento di Chimica and Istituto ISB-CNR, Università La Sapienza di Roma, P.le Aldo, Moro 5, 00185, Rome, Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica and Istituto ISB-CNR, Università La Sapienza di Roma, P.le Aldo, Moro 5, 00185, Rome, Italy
| | - Giorgio Olivo
- Dipartimento di Chimica and Istituto ISB-CNR, Università La Sapienza di Roma, P.le Aldo, Moro 5, 00185, Rome, Italy
| |
Collapse
|
2
|
Sýs M, Kocábová J, Klikarová J, Novák M, Jirásko R, Obluková M, Mikysek T, Sokolová R. Comparison of mononuclear and dinuclear copper(II) biomimetic complexes: spectroelectrochemical mechanistic study of their catalytic pathways. Dalton Trans 2022; 51:13703-13715. [PMID: 36001067 DOI: 10.1039/d2dt01610a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two catecholase-like biomimetic catalysts, namely, two dinuclear copper complexes [Cu2(L1)(OH)(H2O)(EtOH)][ClO4]2 (C1) and [Cu2Ac2O(L1)ClO4] (C2) with the 2,6-bis(4-methyl piperazin-1-yl-methyl)-4-formyl-phenoxy ligand (L1) together with the mononuclear complex Cu(ClO4)2(L2) (C3) containing ligand 1,2-(C5H4N-6-OCH3-2-CHN)2CH2CH2 (L2), were synthesized. Their catalytic pathways were investigated and compared. The evaluation of the catalytic activity of compound C1 (and C2, C3) using the Michaelis-Menten model was represented by values of KM = 272.93 (223.02; 1616) μmol L-1 and Vmax of 0.981 (1.617; 1.689) μmol L-1 s-1. The role of water content in the solvent is also discussed. The dinuclear complexes C1 and C2 were found to be more efficient catalysts than mononuclear complex C3. The mode of catalytic action was characterized via cyclic voltammetry, spectrophotometry, and UV-Vis spectroelectrochemistry. The catalytic mechanism of 3,5-di-tert butyl catechol oxidation in the presence of oxygen was proposed. The reaction circle was proved by the confirmation of the chemical reversibility of complex reduction. The advantage of the in situ spectroelectrochemical measurement enabled to control the reduction of quinone formed by the chemical reaction of catechol with oxygen in solution. At this step, the simultaneous change in the absorption spectrum indicated a change in the copper redox state of the catalyst.
Collapse
Affiliation(s)
- Milan Sýs
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.
| | - Jana Kocábová
- J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 182 23 Prague 8, Czech Republic.
| | - Jitka Klikarová
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.
| | - Miroslav Novák
- Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
| | - Robert Jirásko
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.
| | - Michaela Obluková
- J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 182 23 Prague 8, Czech Republic.
| | - Tomáš Mikysek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.
| | - Romana Sokolová
- J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 182 23 Prague 8, Czech Republic.
| |
Collapse
|
3
|
Novák M, Turek J, Milasheuskaya Y, Růžičková Z, Podzimek Š, Jambor R. N-Donor stabilized tin(II) cations as efficient ROP catalysts for the synthesis of linear and star-shaped PLAs via the activated monomer mechanism. Dalton Trans 2021; 50:16039-16052. [PMID: 34651625 DOI: 10.1039/d1dt02658e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
α-Iminopyridine ligands L1 (2-(CHN(C6H2-2,4,6-Ph3))C5H4N), L2 (2-(CHN(C6H2-2,4,6-tBu3))C5H4N) and L3 (1,2-(C5H4N-2-CHN)2CH2CH2) differing by the steric demand of the substituent on the imine CHN group and by the number of donating nitrogen atoms were utilized to initiate a Lewis base mediated ionization of SnCl2 in an effort to prepare ionic tin(II) species [L1-3 → SnCl][SnCl3]. The reaction of L1 and L2 with SnCl2 led to the formation of neutral adducts [L1 → SnCl2] (2) and [L2 → SnCl2] (3). The preparation of the desired ionic compounds was achieved by subsequent reactions of 2 and 3 with an equivalent of SnCl2 or GaCl3. In contrast, ligand L3 containing four donor nitrogen atoms showed the ability to ionize SnCl2 and also Sn(OTf)2, yielding [L3 → SnCl][SnCl3] (7) and [L3 → Sn(H2O)][OTf]2 (8). The study thus revealed that the reaction is dependent on the type of the ligand. The prepared complexes 4-8 together with the previously reported [{2-((CH3)CN(C6H3-2,6-iPr2))-6-CH3O-C5H3N}SnCl][SnCl3] (1) were tested as catalysts for the ROP of L-lactide, which could operate via an activated monomer mechanism. Finally, a DFT computational study was performed to evaluate the steric and electronic properties of the ionic tin(II) species 1 and 4-8 together with their ability to interact with the L-lactide monomer.
Collapse
Affiliation(s)
- Miroslav Novák
- Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic.
| | - Jan Turek
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Yaraslava Milasheuskaya
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Zdeňka Růžičková
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Štěpán Podzimek
- Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic. .,Synpo, Ltd., S.K. Neumanna 1316, 53207 Pardubice, Czech Republic
| | - Roman Jambor
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| |
Collapse
|
4
|
Synthesis and anti-cancer activity of bis-amino-phosphine ligand and its ruthenium(II) complexes. Bioorg Med Chem Lett 2020; 30:127492. [DOI: 10.1016/j.bmcl.2020.127492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 12/30/2022]
|