Yang S, Zhou T, Poater A, Cavallo L, Nolan SP, Szostak M. Suzuki-Miyaura Cross-Coupling of Esters by Selective O-C(O) Cleavage Mediated by Air- and Moisture-Stable [Pd(NHC)(μ-Cl)Cl]
2 Precatalysts: Catalyst Evaluation and Mechanism.
Catal Sci Technol 2021;
11:3189-3197. [PMID:
34211698 PMCID:
PMC8240519 DOI:
10.1039/d1cy00312g]
[Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cross-coupling of aryl esters has emerged as a powerful platform for the functionalization of otherwise inert acyl C-O bonds in chemical synthesis and catalysis. Herein, we report a combined experimental and computational study on the acyl Suzuki-Miyaura cross-coupling of aryl esters mediated by well-defined, air- and moisture-stable Pd(II)-NHC precatalysts [Pd(NHC)(μ-Cl)Cl]2. We present a comprehensive evaluation of [Pd(NHC)(μ-Cl)Cl]2 precatalysts and compare them with the present state-of-the-art [(Pd(NHC)allyl] precatalysts bearing allyl-type throw-away ligands. Most importantly, the study reveals [Pd(NHC)(μ-Cl)Cl]2 as the most reactive precatalysts discovered to date in this reactivity manifold. The unique synthetic utility of this unconventional O-C(O) cross-coupling is highlighted in the late-stage functionalization of pharmaceuticals and sequential chemoselective cross-coupling, providing access to valuable ketone products by a catalytic mechanism involving Pd insertion into the aryl ester bond. Furthermore, we present a comprehensive study of the catalytic cycle by DFT methods. Considering the clear advantages of [Pd(NHC)(μ-Cl)Cl]2 precatalysts on several levels, including facile one-pot synthesis, superior atom-economic profile to all other Pd(II)-NHC catalysts, and versatile reactivity, these should be considered as the 'first-choice' catalysts for all routine applications in ester O-C(O) bond activation.
Collapse