1
|
Tang MQ, Yang ZJ, Han AJ, He ZT. Diastereoselective and Enantioselective Hydrophosphinylations of Conjugated Enynes, Allenes and Dienes via Synergistic Pd/Co Catalysis. Angew Chem Int Ed Engl 2024:e202413428. [PMID: 39254504 DOI: 10.1002/anie.202413428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/11/2024]
Abstract
Different from the reported work focusing on the construction of single P- or C-stereocenter via hydrophosphinylation of unsaturated carbon bonds, the highly diastereo- and enantioselective hydrophosphinylation reaction of allenes, conjugated enynes and 1,3-dienes is achieved via a designed Pd/Co dual catalysis and newly modified masked phosphinylating reagent. A series of allyl motifs bearing both a tertiary C- and P-stereocenter are prepared in generally good yields, >20 : 1 dr, >20 : 1 rr and 99 % ee. The unprecedented diastereo- and enantioselective hydrophosphinylation of 1,3-enynes is established to generate skeletons containing both a P-stereocenter and a nonadjacent chiral axis. The first stereodivergent hydrophosphinylation reaction is also developed to achieve all four P-containing stereoisomers. The present protocol features the use of only 3-minutes reaction time and 0.1 % catalyst, and with the observation of up to 730 TON. A set of mechanistic studies reveal the necessity and roles of two metal catalysts and corroborate the designed synergistic process.
Collapse
Affiliation(s)
- Ming-Qiao Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zi-Jiang Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Ai-Jun Han
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zhi-Tao He
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China
- Ningbo Zhongke Creation Center of New Materials, 315899, Ningbo, China
| |
Collapse
|
2
|
Latha AT, Swamy PCA. Unveiling the Reactivity of Part Per Million Levels of Cobalt-Salen Complexes in Hydrosilylation of Ketones. Chemistry 2024; 30:e202401841. [PMID: 38853149 DOI: 10.1002/chem.202401841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/11/2024]
Abstract
A series of air-stable cobalt(III)salen complexes Co-1 to Co-4 have been synthesized and employed in the hydrosilylation of ketones. Notably, the most intricately tailored Co-3 pre-catalyst exhibited exceptional catalytic activity under mild reaction conditions. The developed catalytic hydrosilylation protocol proceeded with an unusual ppm level (5 ppm) catalyst loading of Co-3 and achieved a maximum turnover number (TON) of 200,000. A wide variety of aromatic, aliphatic, and heterocyclic ketones encompassing both electron-donating and electron-withdrawing substituents were successfully transformed into the desired silyl ethers or secondary alcohols in moderate to excellent yields.
Collapse
Affiliation(s)
- Anjima T Latha
- Main Group Organometallics Optoelectronic Materials and Catalysis Laboratory, Department of Chemistry, National Institute of Technology, Calicut, 673601, India
| | - P Chinna Ayya Swamy
- Main Group Organometallics Optoelectronic Materials and Catalysis Laboratory, Department of Chemistry, National Institute of Technology, Calicut, 673601, India
| |
Collapse
|
3
|
Cotty S, Jeon J, Elbert J, Jeyaraj VS, Mironenko AV, Su X. Electrochemical recycling of homogeneous catalysts. SCIENCE ADVANCES 2022; 8:eade3094. [PMID: 36260663 PMCID: PMC9581474 DOI: 10.1126/sciadv.ade3094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Homogeneous catalysts have rapid kinetics and keen reaction selectivity. However, their widespread use for industrial catalysis has remained limited because of challenges in reusability. Here, we propose a redox-mediated electrochemical approach for catalyst recycling using metallopolymer-functionalized electrodes for binding and release. The redox platform was investigated for the separation of key platinum and palladium homogeneous catalysts used in organic synthesis and industrial chemical manufacturing. Noble metal catalysts for hydrosilylation, silane etherification, Suzuki cross-coupling, and Wacker oxidation were recycled electrochemically. The redox electrodes demonstrated high sorption uptake for platinum-based catalysts (Qmax up to 200 milligrams of platinum per gram of adsorbent) from product mixtures, with up to 99.5% recovery, while retaining full catalytic activity over multiple cycles. The combination of mechanistic studies and electronic structure calculations indicate that selective interactions with anionic intermediates during the catalytic cycle played a key role in the separations. Last, continuous flow cell studies support the scalability and favorable technoeconomics of electrochemical recycling.
Collapse
|
4
|
Gregori BJ, Schmotz MWS, Jacobi von Wangelin A. Stereoselective Semi-Hydrogenations of Alkynes by First-Row (3d) Transition Metal Catalysts. ChemCatChem 2022; 14:e202200886. [PMID: 36632425 PMCID: PMC9825939 DOI: 10.1002/cctc.202200886] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Indexed: 01/14/2023]
Abstract
The chemo- and stereoselective semi-hydrogenation of alkynes to alkenes is a fundamental transformation in synthetic chemistry, for which the use of precious 4d or 5d metal catalysts is well-established. In mankind's unwavering quest for sustainability, research focus has considerably veered towards the 3d metals. Given their high abundancy and availability as well as lower toxicity and noxiousness, they are undoubtedly attractive from both an economic and an environmental perspective. Herein, we wish to present noteworthy and groundbreaking examples for the use of 3d metal catalysts for diastereoselective alkyne semi-hydrogenation as we embark on a journey through the first-row transition metals.
Collapse
Affiliation(s)
- Bernhard J. Gregori
- Dept. of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | | | | |
Collapse
|
5
|
Chen L, Huo Y, Tai M, Wang X, Gui X, Tu Y, Lin S, Hu J. Imidazolinium‐functionalized Complexes of Cobalt and Iron as Catalysts for Hydrosilylation Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202202482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lei Chen
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | | | - Mingyang Tai
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Xiaofei Wang
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Xuefeng Gui
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Yuanyuan Tu
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 P.R. China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 P.R. China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 P.R. China
- CASH GCC Shaoguan Research Institute of Advanced Materials Nanxiong 512400 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Shudong Lin
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 P.R. China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 P.R. China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 P.R. China
- CASH GCC Shaoguan Research Institute of Advanced Materials Nanxiong 512400 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Jiwen Hu
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 P.R. China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 P.R. China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 P.R. China
- CASH GCC Shaoguan Research Institute of Advanced Materials Nanxiong 512400 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| |
Collapse
|
6
|
Schiltz P, Casaretto N, Auffrant A, Gosmini C. Cobalt Complexes Supported by Phosphinoquinoline Ligands for the Catalyzed Hydrosilylation of Carbonyl Compounds. Chemistry 2022; 28:e202200437. [DOI: 10.1002/chem.202200437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 01/05/2023]
Affiliation(s)
- Pauline Schiltz
- Laboratoire de Chimie Moléculaire (LCM) CNRS Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay 91120 Palaiseau France
| | - Nicolas Casaretto
- Laboratoire de Chimie Moléculaire (LCM) CNRS Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay 91120 Palaiseau France
| | - Audrey Auffrant
- Laboratoire de Chimie Moléculaire (LCM) CNRS Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay 91120 Palaiseau France
| | - Corinne Gosmini
- Laboratoire de Chimie Moléculaire (LCM) CNRS Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay 91120 Palaiseau France
| |
Collapse
|
7
|
Sharma A, So S, Kim JH, MacMillan SN, Baik MH, Trovitch RJ. An Aryl Diimine Cobalt(I) Catalyst for Carbonyl Hydrosilylation. Chem Commun (Camb) 2022; 58:10793-10796. [DOI: 10.1039/d2cc04089a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through the application of a redox-innocent aryl diimine chelate, the discovery and utilization of a cobalt catalyst, (Ph2PPrADI)Co, that exhibits carbonyl hydrosilylation turnover frequencies of up to 330 s–1 is...
Collapse
|
8
|
Wu ZH, Cheng AQ, Yuan M, Zhao YX, Yang HL, Wei LH, Wang HY, Wang T, Zhang Z, Duan WL. Cobalt-Catalysed Asymmetric Addition and Alkylation of Secondary Phosphine Oxides for the Synthesis of P-Stereogenic Compounds. Angew Chem Int Ed Engl 2021; 60:27241-27246. [PMID: 34739169 DOI: 10.1002/anie.202111137] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/21/2021] [Indexed: 01/01/2023]
Abstract
The catalytic asymmetric synthesis of P-chiral phosphorus compounds is an important way to construct P-chiral ligands. Herein, we report a new strategy that adopts the pyridinyl moiety as the coordinating group in the cobalt-catalysed asymmetric nucleophilic addition/alkylation of secondary phosphine oxides. A series of tertiary phosphine oxides were generated with up to 99 % yield and 99.5 % ee, and with broad functional-group tolerance. Mechanistic studies reveal that (R)-secondary phosphine oxides preferentially interact with the cobalt catalysts to produce P-stereogenic compounds.
Collapse
Affiliation(s)
- Zeng-Hua Wu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China
| | - An-Qi Cheng
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China
| | - Meng Yuan
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China
| | - Ya-Xuan Zhao
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China
| | - Huai-Lan Yang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China
| | - Li-Hua Wei
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China
| | - Huai-Yu Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China
| | - Zunting Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China
| | - Wei-Liang Duan
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an, 710119, China.,College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 225002, China
| |
Collapse
|
9
|
Wu Z, Cheng A, Yuan M, Zhao Y, Yang H, Wei L, Wang H, Wang T, Zhang Z, Duan W. Cobalt‐Catalysed Asymmetric Addition and Alkylation of Secondary Phosphine Oxides for the Synthesis of
P
‐Stereogenic Compounds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zeng‐Hua Wu
- School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Changan Street Xi'an 710119 China
| | - An‐Qi Cheng
- School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Changan Street Xi'an 710119 China
| | - Meng Yuan
- School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Changan Street Xi'an 710119 China
| | - Ya‐Xuan Zhao
- School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Changan Street Xi'an 710119 China
| | - Huai‐Lan Yang
- School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Changan Street Xi'an 710119 China
| | - Li‐Hua Wei
- School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Changan Street Xi'an 710119 China
| | - Huai‐Yu Wang
- School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Changan Street Xi'an 710119 China
| | - Tao Wang
- School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Changan Street Xi'an 710119 China
| | - Zunting Zhang
- School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Changan Street Xi'an 710119 China
| | - Wei‐Liang Duan
- School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Changan Street Xi'an 710119 China
- College of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Road Yangzhou 225002 China
| |
Collapse
|
10
|
Sudharsan M, Nethaji M, Bhuvanesh NS, Suresh D. Heteroleptic Palladium(II) Complexes of Thiazolinyl‐picolinamide Derived N
∩
N
∩
N Pincer Ligand: An Efficient Catalyst for Acylative Suzuki Coupling Reactions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Murugesan Sudharsan
- Department of Chemistry School of Chemical and Biotechnology SASTRA Deemed University Thanjavur Tamil Nadu 613 401 India
| | - Munirathinam Nethaji
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore Karnataka 560 012 India
| | | | - Devarajan Suresh
- Department of Chemistry School of Chemical and Biotechnology SASTRA Deemed University Thanjavur Tamil Nadu 613 401 India
| |
Collapse
|
11
|
Ulm F, Shahane S, Truong‐Phuoc L, Romero T, Papaefthimiou V, Chessé M, Chetcuti MJ, Pham‐Huu C, Michon C, Ritleng V. Half‐Sandwich Nickel(II) NHC‐Picolyl Complexes as Catalysts for the Hydrosilylation of Carbonyl Compounds: Evidence for NHC‐Nickel Nanoparticles under Harsh Reaction Conditions. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Franck Ulm
- Université de Strasbourg Ecole Européenne de Chimie Polymères et Matériaux CNRS LIMA UMR 7042 25 rue Becquerel 67087 Strasbourg France
| | - Saurabh Shahane
- Université de Strasbourg Ecole Européenne de Chimie Polymères et Matériaux CNRS LIMA UMR 7042 25 rue Becquerel 67087 Strasbourg France
| | - Lai Truong‐Phuoc
- Université de Strasbourg Institute of Chemistry and Processes for Energy Environment and Health (ICPEES) UMR 7515 CNRS 25 rue Becquerel 67087 Strasbourg France
| | - Thierry Romero
- Université de Strasbourg Institute of Chemistry and Processes for Energy Environment and Health (ICPEES) UMR 7515 CNRS 25 rue Becquerel 67087 Strasbourg France
| | - Vasiliki Papaefthimiou
- Université de Strasbourg Institute of Chemistry and Processes for Energy Environment and Health (ICPEES) UMR 7515 CNRS 25 rue Becquerel 67087 Strasbourg France
| | - Matthieu Chessé
- Université de Strasbourg Ecole Européenne de Chimie Polymères et Matériaux CNRS LIMA UMR 7042 25 rue Becquerel 67087 Strasbourg France
| | - Michael J. Chetcuti
- Université de Strasbourg Ecole Européenne de Chimie Polymères et Matériaux CNRS LIMA UMR 7042 25 rue Becquerel 67087 Strasbourg France
| | - Cuong Pham‐Huu
- Université de Strasbourg Institute of Chemistry and Processes for Energy Environment and Health (ICPEES) UMR 7515 CNRS 25 rue Becquerel 67087 Strasbourg France
- University of Strasbourg Institute for Advanced Study (USIAS) 5 allée du Général Rouvillois 67083 Strasbourg France
| | - Christophe Michon
- Université de Strasbourg Ecole Européenne de Chimie Polymères et Matériaux CNRS LIMA UMR 7042 25 rue Becquerel 67087 Strasbourg France
- University of Strasbourg Institute for Advanced Study (USIAS) 5 allée du Général Rouvillois 67083 Strasbourg France
| | - Vincent Ritleng
- Université de Strasbourg Ecole Européenne de Chimie Polymères et Matériaux CNRS LIMA UMR 7042 25 rue Becquerel 67087 Strasbourg France
| |
Collapse
|
12
|
Chisholm DT, Hayes PG. Synthesis and characterization of group 13 dichloride (M = Ga, In), dimethyl (M = Al) and cationic methyl aluminum complexes supported by monoanionic NNN-pincer ligands. NEW J CHEM 2021. [DOI: 10.1039/d1nj01064f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of monoanionic NNN-pincer ligands effectively stabilize five-coordinate gallium and indium dichloride complexes, as well as neutral dimethyl aluminum species, and organometallic cations thereof.
Collapse
Affiliation(s)
- Desmond T. Chisholm
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4
| | - Paul G. Hayes
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4
| |
Collapse
|
13
|
Matveeva R, Blasius CK, Wadepohl H, Gade LH. Reactivity of a T-shaped cobalt(I) pincer-complex. Dalton Trans 2021; 50:6802-6810. [PMID: 34032245 DOI: 10.1039/d1dt00277e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivity of a paramagnetic T-shaped cobalt(i) complex, [(iPrboxmi)Co], stabilised by a monoanionic bis(oxazolinylmethylidene)-isoindolate (boxmi) NNN pincer ligand is described. The exposure to carbon monoxide as an additional neutral ligand resulted in the square-planar species [(iPrboxmi)Co(CO)], accompanied by a change in the electronic spin state from S = 1 to S = 0. In contrast, upon treatment with trimethylphosphine the formation of the distorted tetrahedral complex [(iPrboxmi)Co(PMe3)] was observed (S = 1). Reacting [(iPrboxmi)Co] with iodine (I2), organic peroxides (tBu2O2, (SiMe3)2O2) and diphenyldisulphide (Ph2S2) yielded the tetracoordinated complexes [(iPrboxmi)CoI], [(iPrboxmi)Co(OtBu)], [(iPrboxmi)Co(OSiMe3)] and [(iPrboxmi)Co(SPh)], respectively, demonstrating the capability of the boxmi-supported cobalt(i) complex to homolytically cleave bonds and thus its distinct one-electron reactivity. Furthermore, a square-planar cobalt(ii) alkynyl complex [(iPrboxmi)Co(CCArF)] was identified as the main product in the reaction between [(iPrboxmi)Co] and a terminal alkyne, 4-fluoro-1-ethynylbenzene. Putting such species in the context of the previously investigated hydroboration catalysis, its stoichiometric reaction with pinacolborane revealed its potential conversion into a cobalt(ii) hydride complex, thus confirming its original attribution as off-cycle species.
Collapse
Affiliation(s)
- Regina Matveeva
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| | - Clemens K Blasius
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| | - Lutz H Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| |
Collapse
|
14
|
Blasius CK, Vasilenko V, Matveeva R, Wadepohl H, Gade LH. Reaction Pathways and Redox States in α-Selective Cobalt-Catalyzed Hydroborations of Alkynes. Angew Chem Int Ed Engl 2020; 59:23010-23014. [PMID: 32889757 PMCID: PMC7756293 DOI: 10.1002/anie.202009625] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Indexed: 11/19/2022]
Abstract
Cobalt(II) alkyl complexes supported by a monoanionic NNN pincer ligand are pre‐catalysts for the regioselective hydroboration of terminal alkynes, yielding the Markovnikov products with α:β‐(E) ratios of up to 97:3. A cobalt(II) hydride and a cobalt(II) vinyl complex appear to determine the main reaction pathway. In a background reaction the highly reactive hydrido species specifically converts to a coordinatively unsaturated cobalt(I) complex which was found to re‐enter the main catalytic cycle.
Collapse
Affiliation(s)
- Clemens K Blasius
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Vladislav Vasilenko
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Regina Matveeva
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Lutz H Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
15
|
Reaction Pathways and Redox States in α‐Selective Cobalt‐Catalyzed Hydroborations of Alkynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|