1
|
Delaney AR, Kroeger AA, Coote ML, Colebatch AL. Oxidative Addition and β-Hydride Elimination by a Macrocyclic Dinickel Complex: Observing Bimetallic Elementary Reactions. Chemistry 2023; 29:e202302366. [PMID: 37641804 DOI: 10.1002/chem.202302366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
The dinickel(I) complex Ni2 (tBu PONNOPONNO), featuring a planar macrocyclic diphosphoranide ligand tBu PONNOPONNO, offers a unique architectural platform for observing bimetallic elementary reactions. Oxidative addition reactions of alkyl halides produce dinickel(II) complexes of the type Ni2 (μ-R)(μ-X)(tBu PONNOPONNO). However, when R=Et β-hydride elimination is observed to form a dinickel monohydride, with the rate dependent on the nature of X. DFT studies suggest a new mechanism for bimetallic β-hydride elimination, where the rate dependence arises from the steric pressure imposed by the X group on the opposing trans face of the dinickel macrocycle. This work enhances understanding of bimetallic elementary reactions, particularly β-hydride elimination, which have not been well-explored for dinuclear systems.
Collapse
Affiliation(s)
- Andie R Delaney
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Asja A Kroeger
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- Institute for Nanoscale Science & Technology, Flinders University, Adelaide, South Australia, 5042, Australia
| | - Michelle L Coote
- Institute for Nanoscale Science & Technology, Flinders University, Adelaide, South Australia, 5042, Australia
| | - Annie L Colebatch
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
2
|
Mao JX, Chang J, Zhang J, Chen X. Structures of nickel chloride and thiolate complexes supported by PCN and POCOP pincer ligands and catalytic reactivity of the chloride complexes. Dalton Trans 2023; 52:17485-17492. [PMID: 37955433 DOI: 10.1039/d3dt03109h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Nickel chloride and thiolate complexes supported by benzene-pyridine-based nonsymmetrical PCN pincer ligands, [2-(tBu2PO)-6-(2-pyrindinyl-4-R)-C6H3]NiX (R = H, CH3, CF3; X = Cl, SH, SPh), were synthesized and fully characterized. The structures of these complexes and the catalytic reactivity of the chloride complexes were investigated along with the related POCOP counterparts [2,6-(tBu2PO)2C6H3]NiX (X = Cl, SH). It was found that the composition and substitution of the pincer backbone evidently influence the structures and catalytic reactivity. The Ni-P and Ni-Cipso bond lengths in the PCN complexes are significantly shorter than those in the POCOP complex. The Ni-Cl and Ni-S bond lengths in the PCN complexes are longer than those in the POCOP complexes. An electron rich pyrindinyl ring in the PCN complexes makes the Ni-Cl bond longer. The Ni-N bond length is more sensitive to the auxiliary ligand compared with the Ni-P bond length in the PCN complexes. The PCN chloride complexes were found to be active catalysts for selective hydration of nitriles to primary amides in the presence of NaOH at 80 °C and the catalytic activity increases with the increase of electron richness of the pyridinyl ring. However, the corresponding POCOP counterpart is inactive under the same conditions.
Collapse
Affiliation(s)
- Jia-Xue Mao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Jiarui Chang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Jie Zhang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
3
|
Himmelbauer D, Schratzberger H, Käfer MG, Stöger B, Veiros LF, Kirchner K. Nonsymmetrical Benzene–Pyridine-Based Nickel Pincer Complexes Featuring Borohydride, Formate, Ethyl, and Nitrosyl Ligands. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Himmelbauer
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Heiko Schratzberger
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Matthias G. Käfer
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Berthold Stöger
- X-Ray Center, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Luis F. Veiros
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| |
Collapse
|