Koptseva TS, Moskalev MV, Skatova AA, Rumyantcev RV, Fedushkin IL. Reduction of CO
2 with Aluminum Hydrides Supported with Ar-BIAN Radical-Anions (Ar-BIAN = 1,2-Bis(arylimino)acenaphthene).
Inorg Chem 2021;
61:206-213. [PMID:
34949085 DOI:
10.1021/acs.inorgchem.1c02731]
[Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The reactions of H2AlCl with [(dpp-Bian)Na(Et2O)n] and [(ArBIG-Bian)Na(THF)] produce respective aluminum hydrides supported by radical-anionic 1,2-bis(arylimino)acenaphthene ligands, [(dpp-Bian)AlH2] (1) and [(ArBIG-Bian)AlH2(THF)] (2) (dpp-Bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene); ArBIG-Bian = 1,2-bis[(2,6-dibenzhydryl-4-methylphenyl)imino]acenaphthene). The reaction of 1 with CO2 proceeds with reduction of both C═O bonds and results in diolate [{(dpp-Bian)Al(μ-O2CH2)}2] (3). Complex 2 reacts with CO2 to carbonate [{(ArBIG-Bian)Al(μ-OCH2OCO2)}2] (4) that is a result of the insertion of CO2 into the Al-O bond in diolate species formed initially. Aluminum monohydrides [(dpp-Bian)AlH(X)] (X = Cl, 5; Me, 6) react with CO2 to form respective alumoxanes [{(dpp-Bian)AlX}2(μ-O)] (X = Cl, 7 and X = Me, 8). Compounds 1-4, 7, and 8 have been characterized by ESR and IR spectroscopy, and their molecular structures have been determined by single-crystal X-ray analysis.
Collapse