1
|
Nguyen NA, Liu DY, Krogstad DV. Impact of water and oleic acid on glycerol monooleate phase transition and bi-continuous structure formation in white oil. SOFT MATTER 2024; 20:7237-7245. [PMID: 39225494 DOI: 10.1039/d4sm00809j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Production of biofuels from biological feedstocks, such as soybean oil, is an important piece of the transition to renewable energy sources. Processes have been developed to co-refine these feedstocks with traditional feedstocks, however, the high concentration of polar functional groups in biofeedstocks can cause a wide range of intermediate chemical reactions and interactions. An improved understanding of the interactions of biofeedstocks and their degradation products is needed to continue to expand the usage of biofeedstocks in fuel production. In this study, the equilibrium structures of glycerol monooleate (GMO), a common intermediate product of biofeedstock processing, in white mineral oil at a wide range of compositions, temperatures, and additional byproduct concentrations (water and/or oleic acid) were characterized using small angle X-ray scattering (SAXS). It was determined that GMO can exist as crystalline aggregates in white oil or as reverse micelles depending on the concentration and temperature. The critical micelle temperature increases significantly with increasing GMO concentration but remains relatively stable with increasing water or fatty acid concentration. Fitting of the SAXS data revealed that for many compositions, the GMO formed roughly spherical reverse micelles, however, at high water concentrations (∼1 wt%), the GMO formed elongated reverse micelles. Additionally, when >1 wt% oleic acid was added to the system, bi-continuous structures were stabilized rather than discreet reverse micelles. These results help increase our understanding of the structural behavior of biofeedstock intermediate products at concentrations and temperatures relevant to biofuel production and can enable processers to design systems and products that can either leverage or prevent these interactions for improved processing performance.
Collapse
Affiliation(s)
- Ngoc A Nguyen
- Illinois Applied Research Institute, University of Illinois Urbana Champaign, IL, 61801, USA.
| | - Deborah Y Liu
- Illinois Applied Research Institute, University of Illinois Urbana Champaign, IL, 61801, USA.
- Department of Materials Science and Engineering, University of Illinois Urbana Champaign, IL, 61801, USA
| | - Daniel V Krogstad
- Illinois Applied Research Institute, University of Illinois Urbana Champaign, IL, 61801, USA.
- Department of Materials Science and Engineering, University of Illinois Urbana Champaign, IL, 61801, USA
| |
Collapse
|
2
|
Wagle SS, Rathee P, Vippala K, Tevet S, Gordin A, Dobrovetsky R, Amir RJ. Polymeric architecture as a tool for controlling the reactivity of palladium(II) loaded nanoreactors. NANOSCALE 2023; 15:15396-15404. [PMID: 37701949 DOI: 10.1039/d3nr02012f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Self-assembled systems, like polymeric micelles, have become great facilitators for conducting organic reactions in aqueous media due to their broad potential applications in green chemistry and biomedical applications. Massive strides have been taken to improve the reaction scope of such systems, enabling them to perform bioorthogonal reactions for prodrug therapy. Considering these significant advancements, we sought to study the relationships between the architecture of the amphiphiles and the reactivity of their PdII loaded micellar nanoreactors in conducting depropargylation reactions. Towards this goal, we designed and synthesized a series of isomeric polyethylene glycol (PEG)-dendron amphiphiles with different dendritic architectures but with an identical degree of hydrophobicity and hydrophilic to lipophilic balance (HLB). We observed that the dendritic architecture, which serves as the main binding site for the PdII ions, has greater influence on the reactivity than the hydrophobicity of the dendron. These trends remained constant for two different propargyl caged substrates, validating the obtained results. Density functional theory (DFT) calculations of simplified models of the dendritic blocks revealed the different binding modes of the various dendritic architectures to PdII ions, which could explain the observed differences in the reactivity of the nanoreactors with different dendritic architectures. Our results demonstrate how tuning the internal architecture of the amphiphiles by changing the orientation of the chelating moieties can be used as a tool for controlling the reactivity of PdII loaded nanoreactors.
Collapse
Affiliation(s)
- Shreyas S Wagle
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.
- Tel-Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Parul Rathee
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.
- Tel-Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Krishna Vippala
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.
- Tel-Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv, 6997801, Israel
- Analytical Technologies Unit R&D, Teva Pharmaceutical Industries, Kfar Saba 4410202, Israel
| | - Shahar Tevet
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.
- Tel-Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Alexander Gordin
- The ADAMA Center for Novel Delivery Systems in Crop Protection, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Roman Dobrovetsky
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.
| | - Roey J Amir
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.
- Analytical Technologies Unit R&D, Teva Pharmaceutical Industries, Kfar Saba 4410202, Israel
- The ADAMA Center for Novel Delivery Systems in Crop Protection, Tel-Aviv University, Tel-Aviv, 6997801, Israel
- The Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
3
|
Ahmed E, Cho J, Jang SS, Weck M. Nonorthogonal Cascade Catalysis in Multicompartment Micelles. Chemistry 2023; 29:e202301231. [PMID: 37183699 DOI: 10.1002/chem.202301231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Multicompartment micelles (MCMs) containing acid and base sites in discrete domains are prepared from poly(norbornene)-based amphiphilic bottlebrush copolymers in aqueous media. The acid and base sites are localized in different compartments of the micelle, enabling the nonorthogonal reaction sequence: deacetalization - Knoevenagel condensation - Michael addition of acetals to 2-amino chromene derivatives. Computational simulations using dissipative particle dynamics (DPD) elucidated the bottlebrush composition required to effectively site-isolate the nonorthogonal catalysts. This contribution presents MCMs as a new class of nanostructures for one-pot multistep nonorthogonal cascade catalysis, laying the groundwork for the isolation of three or more incompatible catalysts to synthesize value-added compounds in a single reaction vessel, in water.
Collapse
Affiliation(s)
- Eman Ahmed
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Jinwon Cho
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA, 30332-0245, USA
| | - Seung Soon Jang
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA, 30332-0245, USA
| | - Marcus Weck
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| |
Collapse
|
4
|
Liu X, Tang L, Chen Y, Fu M, Guo ZH, Tang W, Yue K. Solvent-Free Templated Synthesis of Core-Crosslinked Star-Shaped Polymers in Supramolecular Body-Centered Cubic Phase. Macromol Rapid Commun 2023; 44:e2200292. [PMID: 35578983 DOI: 10.1002/marc.202200292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Indexed: 01/11/2023]
Abstract
This study reports the exploration of a solvent-free supramolecular templated synthesis strategy toward highly core-cross-linked star-shaped polymers (CSPs). To achieve this, a kind of cross-linkable giant surfactant, based on a functionalized polyhedral oligomeric silsesquioxanes (POSS) head tethered with a diblock copolymer tail containing reactive benzocyclobutene groups, is designed and prepared. By varying the volume fraction of linear block copolymer tail, these giant surfactants can self-assemble into a body-centered cubic (BCC) structure in bulk, in which the supramolecular spheres are composed of a core of POSS cages, a middle shell of crosslinkable poly(4-vinylbenzocyclobutene) (PBCB) blocks, and a corona of inert polystyrene (PS) blocks. The solvent-free thermally induced cross-linking reaction of the benzocyclobutene groups can be finished in 5 min upon heating, resulting in well-defined polymeric spheres with over 90 linear chains surrounding the cross-linked cores. The outer PS blocks serve as the protection corona to ensure that cross-linking of giant surfactants occurs in each supramolecular spherical domain. Given the modular design and diversity of the POSS-based giant surfactants, it is believed that the strategy may enable access to a wide range of CSPs.
Collapse
Affiliation(s)
- Xiaobo Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Lei Tang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Yutong Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Mi Fu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Zi-Hao Guo
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Wen Tang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Kan Yue
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
5
|
Ahmed E, Cho J, Friedmann L, Jang SS, Weck M. Catalytically Active Multicompartment Micelles. JACS AU 2022; 2:2316-2326. [PMID: 36311828 PMCID: PMC9597600 DOI: 10.1021/jacsau.2c00367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
This article presents the self-assembly behavior of multicompartment micelles (MCMs) in water into morphologies with multiple segregated domains and their use as supports for aqueous catalysis. A library of poly(norbornene)-based amphiphilic bottlebrush copolymers containing covalently attached l-proline in the hydrophobic, styrene, and pentafluorostyrene domains and a poly(ethylene glycol)-containing repeat unit as the hydrophilic block have been synthesized using ring-opening metathesis polymerization. Interaction parameter (χ) values between amphiphilic blocks were determined using a Flory-Huggins-based computational model. The morphologies of the MCMs are observed via cryogenic transmission electron microscopy and modeled using dissipative particle dynamic simulations. The catalytic activities of these MCM nanoreactors were systematically investigated using the aldol addition between 4-nitrobenzaldehyde and cyclohexanone in water as a model reaction. MCMs present an ideal environment for catalysis by providing control over water content and enhancing interactions between the catalytic sites and the aldehyde substrate, thereby forming the aldol product in high yields and selectivities that is otherwise not possible under aqueous conditions. Catalyst location, block ratio, and functionality have substantial influences on micelle morphology and, ultimately, catalytic efficiency. "Clover-like" and "core-shell" micelle morphologies displayed the best catalytic activity. Our MCM-based catalytic system expands the application of these nanostructures beyond selective storage of guest molecules and demonstrates the importance of micelle morphology on catalytic activity.
Collapse
Affiliation(s)
- Eman Ahmed
- Molecular
Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Jinwon Cho
- School
of Materials Science and Engineering, Georgia
Institute of Technology, 771 Ferst Dr., Atlanta, Georgia 30332-0245, United States
| | - Lulu Friedmann
- Molecular
Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Seung Soon Jang
- School
of Materials Science and Engineering, Georgia
Institute of Technology, 771 Ferst Dr., Atlanta, Georgia 30332-0245, United States
| | - Marcus Weck
- Molecular
Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
6
|
Elistratova AA, Gubarev AS, Lezov AA, Vlasov PS, Solomatina AI, Liao YC, Chou PT, Tunik SP, Chelushkin PS, Tsvetkov NV. Amphiphilic Diblock Copolymers Bearing Poly(Ethylene Glycol) Block: Hydrodynamic Properties in Organic Solvents and Water Micellar Dispersions, Effect of Hydrophobic Block Chemistry on Dispersion Stability and Cytotoxicity. Polymers (Basel) 2022; 14:4361. [PMID: 36297939 PMCID: PMC9612359 DOI: 10.3390/polym14204361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Despite the fact that amphiphilic block copolymers have been studied in detail by various methods both in common solvents and aqueous dispersions, their hydrodynamic description is still incomplete. In this paper, we present a detailed hydrodynamic study of six commercial diblock copolymers featuring the same hydrophilic block (poly(ethylene glycol), PEG; degree of polymerization is ca. 110 ± 25) and the following hydrophobic blocks: polystyrene, PS35-b-PEG115; poly(methyl methacrylate), PMMA55-b-PEG95; poly(1,4-butadyene), PBd90-b-PEG130; polyethylene PE40-b-PEG85; poly(dimethylsiloxane), PDMS15-b-PEG115; and poly(ɛ-caprolactone), PCL45-b-PEG115. The hydrodynamic properties of block copolymers are investigated in both an organic solvent (tetrahydrofuran) and in water micellar dispersions by the combination of static/dynamic light scattering, viscometry, and analytical ultracentrifugation. All the micellar dispersions demonstrate bimodal particle distributions: small compact (hydrodynamic redii, Rh ≤ 17 nm) spherical particles ascribed to "conventional" core-shell polymer micelles and larger particles ascribed to micellar clusters. Hydrodynamic invariants are (2.4 ± 0.4) × 10-10 g cm2 s-2 K-1 mol-1/3 for all types of micelles used in the study. For aqueous micellar dispersions, in view of their potential biomedical applications, their critical micelle concentration values and cytotoxicities are also reported. The investigated micelles are stable towards precipitation, possess low critical micelle concentration values (with the exception of PDMS15-b-PEG115), and demonstrate low toxicity towards Chinese Hamster Ovarian (CHO-K1) cells.
Collapse
Affiliation(s)
- Anastasiia A. Elistratova
- Institute of Chemistry, St. Petersburg State University, Universitetskii Av., 26, 198504 St. Petersburg, Russia
| | - Alexander S. Gubarev
- Department of Molecular Biophysics and Physics of Polymers, St. Petersburg State University, Universitetskaya nab., 7/9, 199034 St. Petersburg, Russia
| | - Alexey A. Lezov
- Department of Molecular Biophysics and Physics of Polymers, St. Petersburg State University, Universitetskaya nab., 7/9, 199034 St. Petersburg, Russia
| | - Petr S. Vlasov
- Institute of Chemistry, St. Petersburg State University, Universitetskii Av., 26, 198504 St. Petersburg, Russia
| | - Anastasia I. Solomatina
- Institute of Chemistry, St. Petersburg State University, Universitetskii Av., 26, 198504 St. Petersburg, Russia
| | - Yu-Chan Liao
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Sergey P. Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskii Av., 26, 198504 St. Petersburg, Russia
| | - Pavel S. Chelushkin
- Institute of Chemistry, St. Petersburg State University, Universitetskii Av., 26, 198504 St. Petersburg, Russia
| | - Nikolai V. Tsvetkov
- Department of Molecular Biophysics and Physics of Polymers, St. Petersburg State University, Universitetskaya nab., 7/9, 199034 St. Petersburg, Russia
| |
Collapse
|
7
|
Flouda P, Stryutsky AV, Buxton ML, Adstedt KM, Bukharina D, Shevchenko VV, Tsukruk VV. Reconfiguration of Langmuir Monolayers of Thermo-Responsive Branched Ionic Polymers with LCST Transition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12070-12081. [PMID: 36150123 DOI: 10.1021/acs.langmuir.2c01940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Thermo-responsive ionic polymers have the ability to form adaptive and switchable morphologies, which may offer enhanced control in energy storage and catalytic applications. Current thermo-responsive polymers are composed of covalently attached thermo-responsive moieties, restricting their mobility and global dynamic response. Here, we report the synthesis and assembly at the water-air interface of symmetric and asymmetric amphiphilic thermo-responsive branched polymers with weakly ionically bound arms of amine-terminated poly(N-isopropylacrylamide) (PNIPAM) macro-cations. As we observed, symmetric branched polymers formed multimolecular nanosized micellar assemblies, whereas corresponding asymmetric polymers formed large, interconnected worm-like aggregates. Dramatic changes in localized and large-scale chemical composition confirmed the reversible adsorption and desorption of the mobile PNIPAM macro-cations below and above the low critical solution temperature (LCST) and their non-uniform redistribution within polymer monolayer. Increasing the temperature above LCST led to the formation of large interconnected micellar aggregates because of the micelle-centered aggregation of the hydrophobized PNIPAM macro-cationic terminal chains in the aqueous subphase. Overall, this work provides insights into the dynamic nature of the chemical composition of branched ionic polymers with weakly ionically bound thermo-responsive terminal chains and its effect on both morphology and local/surface chemistry of monolayers at LCST transition.
Collapse
Affiliation(s)
- Paraskevi Flouda
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Alexandr V Stryutsky
- Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, Kharkivske Shosse 48, Kyiv 02160, Ukraine
| | - Madeline L Buxton
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Katarina M Adstedt
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Daria Bukharina
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Valery V Shevchenko
- Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, Kharkivske Shosse 48, Kyiv 02160, Ukraine
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Tang C, McInnes BT. Cascade Processes with Micellar Reaction Media: Recent Advances and Future Directions. Molecules 2022; 27:molecules27175611. [PMID: 36080376 PMCID: PMC9458028 DOI: 10.3390/molecules27175611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022] Open
Abstract
Reducing the use of solvents is an important aim of green chemistry. Using micelles self-assembled from amphiphilic molecules dispersed in water (considered a green solvent) has facilitated reactions of organic compounds. When performing reactions in micelles, the hydrophobic effect can considerably accelerate apparent reaction rates, as well as enhance selectivity. Here, we review micellar reaction media and their potential role in sustainable chemical production. The focus of this review is applications of engineered amphiphilic systems for reactions (surface-active ionic liquids, designer surfactants, and block copolymers) as reaction media. Micelles are a versatile platform for performing a large array of organic chemistries using water as the bulk solvent. Building on this foundation, synthetic sequences combining several reaction steps in one pot have been developed. Telescoping multiple reactions can reduce solvent waste by limiting the volume of solvents, as well as eliminating purification processes. Thus, in particular, we review recent advances in “one-pot” multistep reactions achieved using micellar reaction media with potential applications in medicinal chemistry and agrochemistry. Photocatalyzed reactions in micellar reaction media are also discussed. In addition to the use of micelles, we emphasize the process (steps to isolate the product and reuse the catalyst).
Collapse
Affiliation(s)
- Christina Tang
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284, USA
- Correspondence:
| | - Bridget T. McInnes
- Computer Science Department, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
9
|
Huang J, Zhu X, Wang Y, Min Y, Li X, Zhang R, Qi D, Hua Z, Chen T. Compartmentalization of incompatible catalysts by micelles from bottlebrush copolymers for one-pot cascade catalysis. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Liu F, Qu P, Weck M. Photoresponsive Azobenzene-Functionalized Shell Cross-Linked Micelles for Selective Asymmetric Transfer Hydrogenation. Org Lett 2022; 24:4099-4103. [PMID: 35476916 DOI: 10.1021/acs.orglett.2c00925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We describe the substrate-selective asymmetric transfer hydrogenation of aromatic ketones using rhodium complexes immobilized on a photoresponsive nanoreactor. The nanoreactor switches its morphology upon light irradiation in a wavelength-selective manner. Kinetic studies show that the gated behavior in the cross-linking layer is key to discriminating among substrates and reagents during catalysis. Under ultraviolet light irradiation, the nanoreactor displays substrate selectivity, converting smaller ketone substrates faster to the corresponding secondary alcohols.
Collapse
Affiliation(s)
- Fangbei Liu
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Peiyuan Qu
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Marcus Weck
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
11
|
Wang H, Fliedel C, Manoury E, Poli R. Core-crosslinked micelles with a poly-anionic poly(styrene sulfonate)-based outer shell made by RAFT polymerization. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Qu P, Cleveland JW, Ahmed E, Liu F, Dubrawski S, Jones CW, Weck M. Compartmentalisation of molecular catalysts for nonorthogonal tandem catalysis. Chem Soc Rev 2021; 51:57-70. [PMID: 34881750 DOI: 10.1039/d1cs00530h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of nonorthogonal tandem catalysis enables the use of a combination of arbitrary catalysts to rapidly synthesize complex products in a substainable, efficient, and timely manner. The key is to compartmentalise the molecular catalysts, thereby overcoming inherent incompatibilities between individual catalysts or reaction conditions. This tutorial review analyses the development of the past two decades in the field of nonorthogonal tandem catalysis with an emphasis on compartmentalisation strategies. We highlight design principles of functional materials for compartmentalisation and suggest future directions in the field of nonorthogonal tandem catalysis.
Collapse
Affiliation(s)
- Peiyuan Qu
- Molecular Design Institute and Department of Chemistry, New York University, 100 Washington Square East New York, NY 10003, USA.
| | - Jacob W Cleveland
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA.
| | - Eman Ahmed
- Molecular Design Institute and Department of Chemistry, New York University, 100 Washington Square East New York, NY 10003, USA.
| | - Fangbei Liu
- Molecular Design Institute and Department of Chemistry, New York University, 100 Washington Square East New York, NY 10003, USA.
| | - Sage Dubrawski
- Molecular Design Institute and Department of Chemistry, New York University, 100 Washington Square East New York, NY 10003, USA.
| | - Christopher W Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA.
| | - Marcus Weck
- Molecular Design Institute and Department of Chemistry, New York University, 100 Washington Square East New York, NY 10003, USA.
| |
Collapse
|
13
|
Akporji N, Singhania V, Dussart-Gautheret J, Gallou F, Lipshutz BH. Nanomicelle-enhanced, asymmetric ERED-catalyzed reductions of activated olefins. Applications to 1-pot chemo- and bio-catalysis sequences in water. Chem Commun (Camb) 2021; 57:11847-11850. [PMID: 34698744 DOI: 10.1039/d1cc04774d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bio-catalytic reactions involving ene-reductases (EREDs) in tandem with chemo-catalysis in water can be greatly enhanced by the presence of nanomicelles derived from the surfactant TPGS-750-M. Transformations are provided that illustrate the variety of sequences now possible in 1-pot as representative examples of this environmentally attractive approach to organic synthesis.
Collapse
Affiliation(s)
- Nnamdi Akporji
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | - Vani Singhania
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | - Jade Dussart-Gautheret
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | | | - Bruce H Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|
14
|
Zhao Z, Wang C, Chen Q, Wang Y, Xiao R, Tan C, Liu G. Phase Separation‐Promoted Redox Deracemization of Secondary Alcohols over a Supported Dual Catalysts System. ChemCatChem 2021. [DOI: 10.1002/cctc.202100738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhitong Zhao
- International Joint Laboratory on Resource Chemistry of Ministry of Education Shanghai Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P. R. China
| | - Chengyi Wang
- International Joint Laboratory on Resource Chemistry of Ministry of Education Shanghai Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P. R. China
| | - Qipeng Chen
- International Joint Laboratory on Resource Chemistry of Ministry of Education Shanghai Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P. R. China
| | - Yu Wang
- International Joint Laboratory on Resource Chemistry of Ministry of Education Shanghai Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P. R. China
| | - Rui Xiao
- International Joint Laboratory on Resource Chemistry of Ministry of Education Shanghai Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P. R. China
| | - Chunxia Tan
- International Joint Laboratory on Resource Chemistry of Ministry of Education Shanghai Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P. R. China
| | - Guohua Liu
- International Joint Laboratory on Resource Chemistry of Ministry of Education Shanghai Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P. R. China
| |
Collapse
|