1
|
Tatarin SV, Meshcheriakova EA, Kozyukhin SA, Emets VV, Bezzubov SI. Rational design of efficient photosensitizers based on cyclometalated iridium(III) complexes with 2-arylbenzimidazole and aromatic 1,3-diketone ligands. Dalton Trans 2023; 52:16261-16275. [PMID: 37855226 DOI: 10.1039/d3dt02789a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A judicious selection of substituents in cyclometalating 2-arylbenzimidazoles and an ancillary aromatic 1,3-diketone enabled the creation of heteroleptic iridium(III) complexes demonstrating strong light absorption up to 500 nm (ε ≈ 10 000-12 000 M-1 cm-1). The complexes, which were studied by various spectroscopic techniques, single-crystal X-ray diffraction and cyclic voltammetry, displayed tunable absorption maxima depending on the nature of substituents and their positions. The experimental study was corroborated by quantum chemical calculations, which showed an increased contribution of intraligand charge transfer transitions to the visible light absorption in the case of complexes containing electron-withdrawing substituents in the ligands. Despite being of high intensity, some of these transitions are responsible for the formation of the excited states located at large distances from the 'anchoring' fragment incorporated in the ancillary ligand. In turn, incorporation of electron-donating substituents at the para-position to the Ir-C bonds increases the number of excited states located on the ancillary ligand. The destabilization of the HOMO, which is caused by the increase in the electron-donating ability of the substituents in the metalated rings, translated into negative shifts of the Ir4+/Ir3+ redox potential, affecting, in some cases, the degree of electrochemical reversibility of the complexes. Several complexes having strong light-harvesting characteristics and undergoing reversible oxidation in the appropriate potential range were used for coating the TiO2 photoanodes, which reached an efficiency of 2.15% upon irradiation with the standard AM 1.5 spectrum.
Collapse
Affiliation(s)
- Sergei V Tatarin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.
| | - Elizaveta A Meshcheriakova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.
- Lomonosov Moscow State University, Lenin's Hills, 1-3, Moscow, 119991, Russia
| | - Sergey A Kozyukhin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.
| | - Victor V Emets
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119071, Russia
| | - Stanislav I Bezzubov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.
| |
Collapse
|
2
|
Kisel KS, Shakirova JR, Pavlovskiy VV, Evarestov RA, Gurzhiy VV, Tunik SP. Unusual Effects of the Metal Center Coordination Mode on the Photophysical Behavior of the Rhenium(I) and Rhenium(I)-Iridium(III) Complexes. Inorg Chem 2023; 62:18625-18640. [PMID: 37919252 DOI: 10.1021/acs.inorgchem.3c02915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Binuclear transition-metal complexes based on conjugated systems containing coordinating functions are potentially suitable for a wide range of applications, including light-emitting materials, sensors, light-harvesting systems, photocatalysts, etc., due to energy-transfer processes between chromophore centers. Herein we report on the synthesis, characterization, photophysical, and theoretical studies of relatively rare rhenium(I) and rhenium(I)-iridium(III) dyads prepared by using the nonsymmetrical polytopic ligands (NN2 and NN3) with the strongly conjugated phenanthroline and imidazole-quinoline/pyridine coordinating fragments. Availability of these different diimine chelating functions and targeted synthetic procedures allowed one to obtain a series of mononuclear (Re and Ir) and binuclear (Re-Re and Re-Ir) metal complexes with various modes of {Re(CO)3Cl} and {Ir(NC)2} metal fragment coordination. The obtained compounds were characterized by 1D 1H and 2D (COSY and NOESY) NMR spectroscopy, mass spectrometry, elemental analysis, and X-ray diffraction crystallography. The photophysical study of the complexes (absorption, excitation and emission spectra, quantum yields, and excited-state lifetimes) showed that their emission parameters display strong dependence on the manner of metal center coordination to the diimine bidentate functions. The mononuclear complexes with an unoccupied imidazole-quinoline/pyridine fragment [Re(NN2), Re(NN3), and Ir(NC2)2(NN2)] or those containing a coordinated {Ir(NC)2} fragment in this position [Ir(NC2)2(NN1) and Re(NN2)Ir(NC1)2-Re(NN2)Ir(NC4)2] exhibit moderate-to-intense phosphorescence (quantum yields vary from 3% to 56% in a degassed solution), whereas the complexes containing a {Re(CO)3Cl} moiety in the imidazole-quinoline/pyridine position [Re2(NN2), Re2(NN3), and Ir(NC2)2(NN2)Re] demonstrate a strong reduction in the phosphorescence efficiency with a quantum yield of ≪0.1%. Quenching of the phosphorescence in the latter types of emitters is discussed in terms of a strong decrease in the radiative rate constants for these complexes compared to their analogues mentioned above, while the nonradiative constants remain nearly unchanged. Theoretical density functional theory (DFT) and time-dependent DFT (TD DFT) calculations, including evaluation of the radiative rate constants for the couple of structurally analogous complexes with and without a {Re(CO)3Cl} moiety coordinated to the imidazole-quinoline/pyridine chelating function, confirmed the observed trend in the variation of the emission intensity.
Collapse
Affiliation(s)
- Kristina S Kisel
- Institute of Chemistry, St. Petersburg State University, Universitetskii av., 26, 198504 St. Petersburg, Russia
| | - Julia R Shakirova
- Institute of Chemistry, St. Petersburg State University, Universitetskii av., 26, 198504 St. Petersburg, Russia
| | - Vladimir V Pavlovskiy
- Institute of Chemistry, St. Petersburg State University, Universitetskii av., 26, 198504 St. Petersburg, Russia
| | - Robert A Evarestov
- Institute of Chemistry, St. Petersburg State University, Universitetskii av., 26, 198504 St. Petersburg, Russia
| | - Vladislav V Gurzhiy
- Institute of Earth Sciences, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia
| | - Sergey P Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskii av., 26, 198504 St. Petersburg, Russia
| |
Collapse
|
3
|
Samandarsangari M, Kozina DO, Sokolov VV, Komarova AD, Shirmanova MV, Kritchenkov IS, Tunik SP. Biocompatible Phosphorescent O 2 Sensors Based on Ir(III) Complexes for In Vivo Hypoxia Imaging. BIOSENSORS 2023; 13:680. [PMID: 37504079 PMCID: PMC10377268 DOI: 10.3390/bios13070680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
In this work, we obtained three new phosphorescent iridium complexes (Ir1-Ir3) of general stoichiometry [Ir(N^C)2(N^N)]Cl decorated with oligo(ethylene glycol) fragments to make them water-soluble and biocompatible, as well as to protect them from aggregation with biomolecules such as albumin. The major photophysical characteristics of these phosphorescent complexes are determined by the nature of two cyclometallating ligands (N^C) based on 2-pyridine-benzothiophene, since quantum chemical calculations revealed that the electronic transitions responsible for the excitation and emission are localized mainly at these fragments. However, the use of various diimine ligands (N^N) proved to affect the quantum yield of phosphorescence and allowed for changing the complexes' sensitivity to oxygen, due to the variations in the steric accessibility of the chromophore center for O2 molecules. It was also found that the N^N ligands made it possible to tune the biocompatibility of the resulting compounds. The wavelengths of the Ir1-Ir3 emission maxima fell in the range of 630-650 nm, the quantum yields reached 17% (Ir1) in a deaerated solution, and sensitivity to molecular oxygen, estimated as the ratio of emission lifetime in deaerated and aerated water solutions, displayed the highest value, 8.2, for Ir1. The obtained complexes featured low toxicity, good water solubility and the absence of a significant effect of biological environment components on the parameters of their emission. Of the studied compounds, Ir1 and Ir2 were chosen for in vitro and in vivo biological experiments to estimate oxygen concentration in cell lines and tumors. These sensors have demonstrated their effectiveness for mapping the distribution of oxygen and for monitoring hypoxia in the biological objects studied.
Collapse
Affiliation(s)
- Mozhgan Samandarsangari
- Institute of Chemistry, St. Petersburg State University, Universitetskaya Embankment 7-9, 199034 St. Petersburg, Russia
| | - Daria O Kozina
- Institute of Chemistry, St. Petersburg State University, Universitetskaya Embankment 7-9, 199034 St. Petersburg, Russia
| | - Victor V Sokolov
- Institute of Chemistry, St. Petersburg State University, Universitetskaya Embankment 7-9, 199034 St. Petersburg, Russia
| | - Anastasia D Komarova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhskiy Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarina Av., 23, 603950 Nizhny Novgorod, Russia
| | - Marina V Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhskiy Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Ilya S Kritchenkov
- Institute of Chemistry, St. Petersburg State University, Universitetskaya Embankment 7-9, 199034 St. Petersburg, Russia
| | - Sergey P Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskaya Embankment 7-9, 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
Li C, Pang Y, Xu Y, Lu M, Tu L, Li Q, Sharma A, Guo Z, Li X, Sun Y. Near-infrared metal agents assisting precision medicine: from strategic design to bioimaging and therapeutic applications. Chem Soc Rev 2023. [PMID: 37334831 DOI: 10.1039/d3cs00227f] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Metal agents have made incredible strides in preclinical research and clinical applications in recent years, but their short emission/absorption wavelengths continue to be a barrier to their distribution, therapeutic action, visual tracking, and efficacy evaluation. Nowadays, the near-infrared window (NIR, 650-1700 nm) provides a more accurate imaging and treatment option. Thus, there has been ongoing research focusing on developing multifunctional NIR metal agents for imaging and therapy that have deeper tissue penetration. The design, characteristics, bioimaging, and therapy of NIR metal agents are covered in this overview of papers and reports published to date. To start with, we focus on describing the structure, design strategies, and photophysical properties of metal agents from the NIR-I (650-1000 nm) to NIR-II (1000-1700 nm) region, in order of molecular metal complexes (MMCs), metal-organic complexes (MOCs), and metal-organic frameworks (MOFs). Next, the biomedical applications brought by these superior photophysical and chemical properties for more accurate imaging and therapy are discussed. Finally, we explore the challenges and prospects of each type of NIR metal agent for future biomedical research and clinical translation.
Collapse
Affiliation(s)
- Chonglu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yida Pang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yuling Xu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Mengjiao Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Le Tu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Qian Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Amit Sharma
- CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh 160030, India
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
5
|
Hendi Z, Kozina DO, Porsev VV, Kisel KS, Shakirova JR, Tunik SP. Investigation of the N^C Ligand Effects on Emission Characteristics in a Series of Bis-Metalated [Ir(N^C)2(N^N)]+ Complexes. Molecules 2023; 28:molecules28062740. [PMID: 36985710 PMCID: PMC10054739 DOI: 10.3390/molecules28062740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
A series of bis-metalated phosphorescent [(N^C)2Ir(bipyridine)]+ complexes with systematic variations in the structure and electronic characteristics of the N^C ligands were synthesized and characterized by using elemental analysis, mass spectrometry, NMR spectroscopy and X-ray crystallography. Investigation of the complexes’ spectroscopic properties together with DFT and TD DFT calculations revealed that metal-to-ligand charge transfer (MLCT) and intraligand (LC) transition play key roles in the generation of emissive triplet states. According to the results of theoretical studies, the 3LC excited state is more accurate to consider as an intraligand charge transfer process (ILCT) between N- and C-coordinated moieties of the N^C chelate. This hypothesis is completely in line with the trends observed in the experimental absorption and emission spectra, which display systematic bathochromic shifts upon insertion of electron-withdrawing substituents into the N-coordinated fragment. An analogous shift is induced by expansion of the aromatic system of the C-coordinated fragment and insertion of polarizable sulfur atoms into the aromatic rings. These experimental and theoretical findings extend the knowledge of the nature of photophysical processes in complexes of this type and provide useful instruments for fine-tuning of their emissive characteristics.
Collapse
Affiliation(s)
- Zohreh Hendi
- Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
- Department of Chemistry, Sharif University of Technology, Tehran P.O. Box 11155-3516, Iran
| | - Daria O. Kozina
- Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Vitaly V. Porsev
- Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Kristina S. Kisel
- Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Julia R. Shakirova
- Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
- Correspondence: (J.R.S.); (S.P.T.)
| | - Sergey P. Tunik
- Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
- Correspondence: (J.R.S.); (S.P.T.)
| |
Collapse
|
6
|
Kritchenkov IS, Mikhnevich VG, Stashchak VS, Solomatina AI, Kozina DO, Sokolov VV, Tunik SP. Novel NIR-Phosphorescent Ir(III) Complexes: Synthesis, Characterization and Their Exploration as Lifetime-Based O 2 Sensors in Living Cells. Molecules 2022; 27:3156. [PMID: 35630633 PMCID: PMC9144934 DOI: 10.3390/molecules27103156] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
A series of [Ir(N^C)2(N^N)]+ NIR-emitting orthometalated complexes (1-7) has been prepared and structurally characterized using elemental analysis, mass-spectrometry, and NMR spectroscopy. The complexes display intense phosphorescence with vibrationally structured emission bands exhibiting the maxima in the range 713-722 nm. The DFT and TD DFT calculations showed that the photophysical characteristics of these complexes are largely determined by the properties of the metalating N^C ligands, with their major contribution into formation of the lowest S1 and T1 excited states responsible for low energy absorption and emission, respectively. Emission lifetimes of 1-7 in degassed methanol solution vary from 1.76 to 5.39 µs and show strong quenching with molecular oxygen to provide an order of magnitude lifetime reduction in aerated solution. The photophysics of two complexes (1 and 7) were studied in model physiological media containing fetal bovine serum (FBS) and Dulbecco's Modified Eagle Medium (DMEM) to give linear Stern-Volmer calibrations with substantially lower oxygen-quenching constants compared to those obtained in methanol solution. These observations were interpreted in terms of the sensors' interaction with albumin, which is an abundant component of FBS and cell media. The studied complexes displayed acceptable cytotoxicity and preferential localization, either in mitochondria (1) or in lysosomes (7) of the CHO-K1 cell line. The results of the phosphorescence lifetime imaging (PLIM) experiments demonstrated considerable variations of the sensors' lifetimes under normoxia and hypoxia conditions and indicated their applicability for semi-quantitative measurements of oxygen concentration in living cells. The complexes' emission in the NIR domain and the excitation spectrum, extending down to ca. 600 nm, also showed that they are promising for use in in vivo studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sergey P. Tunik
- Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr., 26, 198504 St. Petersburg, Russia; (I.S.K.); (V.G.M.); (V.S.S.); (A.I.S.); (D.O.K.); (V.V.S.)
| |
Collapse
|
7
|
Adamovich V, Benítez M, Boudreault PL, Buil ML, Esteruelas MA, Oñate E, Tsai JY. Alkynyl Ligands as Building Blocks for the Preparation of Phosphorescent Iridium(III) Emitters: Alternative Synthetic Precursors and Procedures. Inorg Chem 2022; 61:9019-9033. [PMID: 35438993 PMCID: PMC9490848 DOI: 10.1021/acs.inorgchem.2c00197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Alkynyl ligands stabilize
dimers [Ir(μ-X)(3b)2]2 with a cis disposition
of the heterocycles of the 3b
ligands, in contrast to chloride. Thus, the complexes of this class—cis-[Ir(μ2-η2-C≡CPh){κ2-C,N-(C6H4-Isoqui)}2]2 (Isoqui = isoquinoline)
and cis-[Ir(μ2-η2-C≡CR){κ2-C,N-(MeC6H3-py)}2]2 (R =
Ph, tBu)—have been prepared in
high yields, starting from the dihydroxo-bridged dimers trans-[Ir(μ-OH){κ2-C,N-(C6H4-Isoqui)}2]2 and trans-[Ir(μ-OH){κ2-C,N-(MeC6H3-py)}2]2 and terminal alkynes. Subsequently, the acetylide ligands
have been employed as building blocks to prepare the orange and green
iridium(III) phosphorescent emitters, Ir{κ2-C,N-[C(CH2Ph)Npy]}{κ2-C,N-(C6H4-Isoqui)}2 and Ir{κ2-C,N-[C(CH2R)Npy]}{κ2-C,N-(MeC6H3-py)}2 (R = Ph, tBu), respectively,
with an octahedral structure of fac carbon and nitrogen
atoms. The green emitter Ir{κ2-C,N-[C(CH2tBu)Npy]}{κ2-C,N-(MeC6H3-py)}2 reaches 100% of quantum
yield in both the poly(methyl methacrylate) (PMMA) film and 2-MeTHF
at room temperature. In organic light-emitting diode (OLED) devices,
it demonstrates very saturated green emission at a peak wavelength
of 500 nm, with an external quantum efficiency (EQE) of over 12% or
luminous efficacy of 30.7 cd/A. Acetylide
ligands have been employed as building blocks
to prepare orange and green iridium(III) phosphorescent emitters,
with an octahedral structure of fac carbon and nitrogen
atoms. In OLED devices, the emitter Ir{κ2-C,N-[C(CH2tBu)Npy]}{κ2-C,N-(MeC6H3-py)}2 demonstrates
very saturated green emission at a peak wavelength of 500 nm, with
a luminous efficacy of 30.7 cd/A.
Collapse
Affiliation(s)
- Vadim Adamovich
- Universal Display Corporation, Ewing, New Jersey 08618, United States
| | - María Benítez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza─CSIC, 50009 Zaragoza, Spain
| | | | - María L Buil
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza─CSIC, 50009 Zaragoza, Spain
| | - Miguel A Esteruelas
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza─CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza─CSIC, 50009 Zaragoza, Spain
| | - Jui-Yi Tsai
- Universal Display Corporation, Ewing, New Jersey 08618, United States
| |
Collapse
|
8
|
Chelushkin PS, Shakirova JR, Kritchenkov IS, Baigildin VA, Tunik SP. Phosphorescent NIR emitters for biomedicine: applications, advances and challenges. Dalton Trans 2021; 51:1257-1280. [PMID: 34878463 DOI: 10.1039/d1dt03077a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Application of NIR (near-infrared) emitting transition metal complexes in biomedicine is a rapidly developing area of research. Emission of this class of compounds in the "optical transparency windows" of biological tissues and the intrinsic sensitivity of their phosphorescence to oxygen resulted in the preparation of several commercial oxygen sensors capable of deep (up to whole-body) and quantitative mapping of oxygen gradients suitable for in vivo experimental studies. In addition to this achievement, the last decade has also witnessed the increased growth of successful alternative applications of NIR phosphors that include (i) site-specific in vitro and in vivo visualization of sophisticated biological models ranging from 3D cell cultures to intact animals; (ii) sensing of various biologically relevant analytes, such as pH, reactive oxygen and nitrogen species, RedOx agents, etc.; (iii) and several therapeutic applications such as photodynamic (PDT), photothermal (PTT), and photoactivated cancer (PACT) therapies as well as their combinations with other therapeutic and imaging modalities to yield new variants of combined therapies and theranostics. Nevertheless, emerging applications of these compounds in experimental biomedicine and their implementation as therapeutic agents practically applicable in PDT, PTT, and PACT face challenges related to a critically important improvement of their photophysical and physico-chemical characteristics. This review outlines the current state of the art and achievements of the last decade and stresses the most promising trends, major development prospects, and challenges in the design of NIR phosphors suitable for biomedical applications.
Collapse
Affiliation(s)
- Pavel S Chelushkin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Julia R Shakirova
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Ilya S Kritchenkov
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Vadim A Baigildin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Sergey P Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| |
Collapse
|
9
|
Buil ML, Esteruelas MA, López AM. Recent Advances in Synthesis of Molecular Heteroleptic Osmium and Iridium Phosphorescent Emitters. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- María L. Buil
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| | - Miguel A. Esteruelas
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| | - Ana M. López
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| |
Collapse
|