1
|
Leiszner SS, Perfetti M, Damgaard-Møller E, Chen YS, Iversen BB. The effect of second coordination sphere interactions on the magnetic anisotropy of transition metals. Dalton Trans 2024; 53:19246-19255. [PMID: 39530683 DOI: 10.1039/d4dt02873b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In the study of mononuclear transition metal single molecule magnets (SMMs), extensive research has concentrated on identifying optimal coordination geometries around the central metal ion to enhance SMM properties. However, the role of non-covalent interactions in the second coordination sphere has been relatively underexplored. Here, we study the impact of non-covalent Cl⋯H interactions on the magnetic anisotropy of the central Co(II) ion in the distorted axially compressed octahedral complex CoCl2(tu)4 (1) (tu = SC(NH2)2). By performing cantilever torque magnetometry on 1, the orientation of the magnetic easy axis is found to deviate by almost 40° from the axial Co-Cl bond. Theoretical modelling on structural modifications of the structure of 1, quantifies how the distance between the Cl ligand and the nearest H-atom significantly influences the orientation of the magnetic easy axis and the D-value. Experimental chemical bonding analysis based on multipole modelling of synchrotron X-ray diffraction data on 1 reveal that the nearby H-atoms polarize the electron density of the Cl-ligands. This polarization results in reduced electron density at the axial positions on the Co octahedra, explaining the calculated increase in the magnitude of the D-value, when the H-atoms are moved away from Cl in silico. Topological analysis of theoretical electron densities on modified structures of 1 corroborates an increase in the electron density at the Co-Cl bond critical point, as the nearby H-atoms are moved further from Cl. These findings demonstrate the significant influence that non-covalent interactions have on the magnetic anisotropy of mononuclear transition metals and opens the possibility of utilizing these interactions in the design of transition metal based SMMs.
Collapse
Affiliation(s)
- Sofie S Leiszner
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark.
| | - Mauro Perfetti
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Emil Damgaard-Møller
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark.
| | - Yu-Sheng Chen
- ChemMatCARS, The University of Chicago, Lemont, IL 60439, USA
| | - Bo B Iversen
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
2
|
Pohle MH, Lohmiller T, Böhme M, Rams M, Ziegenbalg S, Görls H, Schnegg A, Plass W. THz-EPR-based Magneto-Structural Correlations for Cobalt(II) Single-Ion Magnets With Bis-Chelate Coordination. Chemistry 2024; 30:e202401545. [PMID: 39136581 DOI: 10.1002/chem.202401545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Indexed: 10/18/2024]
Abstract
New cobalt(II)-based complexes with [N2O2] coordination formed by two bis-chelate ligands were synthesized and characterized by a multi-technique approach. The complexes possess an easy-axis anisotropy (D<0) and magnetic measurements show a field-induced slow relaxation of magnetization. The spin-reversal barriers, i. e., the splitting of the two lowest Kramers doublets (UZFS), have been measured by THz-EPR spectroscopy, which allows to distinguish the two crystallographically independent species present in one of the complexes. Based on these experimental UZFS energies together with those for related complexes reported in literature, it was possible to establish magneto-structural correlations. UZFS linearly depends on the elongation parameter ϵT of the (pseudo-)tetrahedral coordination, which is given by the ratio between the average obtuse and acute angles at the cobalt(II) ion, while UZFS was found to be virtually independent of the twist angle of the chelate planes. With increasing deviation from the orthogonality of the latter, the rhombicity (|E/D|) increases.
Collapse
Affiliation(s)
- Maximilian H Pohle
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Thomas Lohmiller
- EPR4 Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 16, 12489, Berlin, Germany
- Current address: Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Michael Böhme
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Michał Rams
- Institute of Physics, Jagiellonian University, 30-348, Kraków, Poland
| | - Sven Ziegenbalg
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Alexander Schnegg
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| |
Collapse
|
3
|
Biswas S, Havlicek L, Nemec I, Salitros I, Mandal L, Neugebauer P, Kuppusamy SK, Ruben M. Levamisole Based Co(II) Single-Ion Magnet. Chem Asian J 2024; 19:e202400574. [PMID: 38870468 DOI: 10.1002/asia.202400574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
A new Co(II) complex, [Co(NCS)2(L)2] (1) has been synthesized based on levamisole (L) as a new ligand. Single-crystal X-ray diffraction analyses confirm that the Co(II) ion is having a distorted tetrahedral coordination geometry in the complex. Notably strong intramolecular S⋅⋅⋅S and S⋅⋅⋅N interactions has been confirmed by employing Quantum Theory of Atoms in Molecules (QTAIM). These intramolecular interactions occur among the sulfur and nitrogen atoms of the levamisole ligands and also the nitrogen atoms of the thiocyanate. Direct current (dc) magnetic analyses reveal presence of zero field splitting (ZFS) and large magnetic anisotropy on Co(II). Detailed ab initio ligand field theory calculations quantitatively predicted the magnitude of ZFS. Prominent field-induced single-ion magnet (SIM) behavior was observed for 1 from dynamic magnetization measurements. Slow magnetic relaxation follows an Orbach mechanism with the effective energy barrier Ueff=29.6 (7) K and relaxation time τo=1.4 (4)×10-9 s.
Collapse
Affiliation(s)
- Soumava Biswas
- Dr. Vishwanath Karad MIT World Peace University Survey No, 124, Paud Rd, Kothrud, Pune, 411038, Maharashtra, India
| | - Lubomir Havlicek
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 61200, Brno, Czech Republic
- Institute of Physics of Materials, Czech Academy of Sciences, Zizkova 22, 61662, Brno, Czech Republic
| | - Ivan Nemec
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 61200, Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, 77147, Olomouc, Czech Republic
| | - Ivan Salitros
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 61200, Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava., Bratislava, SK-81237, Slovakia
| | - Leena Mandal
- Department of Chemistry, Polba Mahavidyalaya, Polba Hooghly, PIN-712148, West Bengal, India
| | - Petr Neugebauer
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 61200, Brno, Czech Republic
| | - Senthil Kumar Kuppusamy
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Mario Ruben
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
4
|
Yang EC, Tsai YT, Chang PY, Ozerov M, Krzystek J, Chien SY, He JX, Kuo TS, Sheu HS. Cobalt(II) Single-Ion Magnet Coordinated by Double Deprotonation of 2,2'-Bipyridine-6,6'-diol Ligands. ACS OMEGA 2024; 9:26149-26158. [PMID: 38911747 PMCID: PMC11190935 DOI: 10.1021/acsomega.4c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024]
Abstract
In this study, we synthesized a new Co(II) complex, [NMe4]2[Co(bpyO2)2] (1), using deprotonated 2,2'-bipyridine-6,6'-diol ligands (bpyO2 2-). This compound exhibits a significant zero-field splitting (D) value. The far-infrared magneto spectroscopy and high-frequency and field electron paramagnetic resonance (HFEPR) measurements indicated that compound 1 possesses D = -54.8 cm-1 and E ∼ 0 cm-1. These findings were subsequently confirmed by other experimental data, including DC magnetic susceptibilities and variable temperature and variable magnetic field reduced magnetizations. Additionally, we conducted a series of AC magnetic susceptibility measurements to investigate the kinetics of magnetization relaxation. Below 6.6 K and under zero external magnetic field, fast quantum tunneling of magnetization (QTM) dominates (∼570 Hz), and temperature-independent out-of-phase signals are observed. Above 8.1 K, temperature-dependent behavior is observed. Furthermore, we examined the AC magnetic susceptibility behavior under external magnetic fields ranging from 300 to 4000 G. The effect of QTM is significantly reduced in the presence of an external magnetic field. Temperature-dependent behavior is primarily governed by Raman relaxation. Through structural analysis of compound 1 and a series of pure nitrogen-coordinated single-ion magnets (SIMs), we propose that the oxo substituents from the double-deprotonated form of the 2,2'-bipyridine-6,6'-diol ligands donate their negative charge to the pyridine ring, forming amido anion sites. This triggers a more pronounced out-of-phase signal than that observed in pure pyridine-coordinated compounds. Moreover, we observed intermolecular interactions, including intermolecular hydrogen bonding, which, to some extent, influenced the slow relaxation of molecules. Therefore, we speculate that the slow relaxation phenomenon of compound 1 may be attributed to the combination of oxo back-donating effects and intermolecular interactions.
Collapse
Affiliation(s)
- En-Che Yang
- Department
of Chemistry, Fu-Jen Catholic University
Hsinchuang, New Taipei
City 242062, Taiwan, Republic of China
| | - Yu-Tung Tsai
- Department
of Chemistry, Fu-Jen Catholic University
Hsinchuang, New Taipei
City 242062, Taiwan, Republic of China
| | - Po-Ya Chang
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan, Republic of China
| | - Mykhaylo Ozerov
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Jurek Krzystek
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Su-Ying Chien
- Instrumentation
Centre College of Science, National Taiwan
University, Taipei 10617, Taiwan,
Republic of China
| | - Jun-Xian He
- Department
of Chemistry, Fu-Jen Catholic University
Hsinchuang, New Taipei
City 242062, Taiwan, Republic of China
| | - Ting-Shen Kuo
- Centre
of National Taiwan Normal University, Taipei 11677, Taiwan, Republic of China
| | - Hwo-Shuenn Sheu
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan, Republic of China
| |
Collapse
|
5
|
Cui HH, Xu H, Zhang T, Chen Q, Luo S, Wang M, Wang J, Chen L, Zhang M, Tang Y. Magnetic Anisotropy and Relaxation in Four-Coordinate Cobalt(II) Single-Ion Magnets with a [Co IIO 4] Core. Inorg Chem 2024; 63:9050-9057. [PMID: 38709957 DOI: 10.1021/acs.inorgchem.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A mononuclear four-coordinate Co(II) complex with a [CoIIO4] core, namely, PPN[Li(MeOH)4][Co(L)2] (1) (PPN = bis(phosphoranediyl)iminium; H2L = perfluoropinacol), has been studied by X-ray crystallography, magnetic characterization, and theoretical calculations. This complex presents a severely distorted coordination geometry. The O-Co-O bite angle is 83.42°/83.65°, and the dihedral twist angle between the O-Co-O chelate planes is 55.6°. The structural distortion results in a large easy-axis magnetic anisotropy with D = -104(1) cm-1 and a transverse component with |E| = +4(2) cm-1. Alternating current (ac) susceptibility measurements demonstrate that 1 exhibits slow relaxation of magnetization at zero static field. However, the frequency-dependent out-of-phase (χ"M) susceptibilities of 1 at 0 Oe do not show a characteristic maximum. Upon the application of a dc field or the dilution with a diamagnetic Zn matrix, the quantum tunneling of magnetization (QTM) process can be successfully suppressed. Notably, after dilution with the Zn matrix, the obtained sample exhibits a structure different from that of the pristine complex. In this altered sample, the asymmetric unit does not contain the Li(MeOH)4+ cation, resulting in an O-Co-O bite angle of 86.05° and a dihedral twist angle of 75.84°, thereby leading to an approximate D2d symmetry. Although such differences are not desirable for magnetic studies, this study still gives some insights. Theoretical calculations reveal that the D parameter is governed by the O-Co-O bite angle, in line with our previous report for other tetrahedral Co(II) complex with a [CoIIN4] core. On the other hand, the rhombic component is found to increase as the dihedral angle deviates from 90°. These findings provide valuable guidelines for fine-tuning the magnetic properties of Co(II) complexes.
Collapse
Affiliation(s)
- Hui-Hui Cui
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Hongjuan Xu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Tengkun Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Qiukai Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Shuchang Luo
- School of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China
| | - Miao Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Mingxing Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yanfeng Tang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
6
|
Xu T, Jiang W, Tao Y, Abdellatief M, Cordova KE, Zhang YB. Popping and Locking: Balanced Rigidity and Porosity of Zeolitic Imidazolate Frameworks for High-Productivity Methane Purification. J Am Chem Soc 2024. [PMID: 38602012 DOI: 10.1021/jacs.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Zeolitic imidazolate frameworks (ZIFs) hold great promise in carbon capture, owing to their structural designability and functional porosity. However, intrinsic linker dynamics limit their pressure-swing adsorption application to biogas upgrading and methane purification. Recently, a functionality-locking strategy has shown feasibility in suppressing such dynamics. Still, a trade-off between structural rigidity and uptake capacity remains a key challenge for optimizing their high-pressure CO2/CH4 separation performance. Here, we report a sequential structural locking (SSL) strategy for enhancing the CO2 capture capacity and CH4 purification productivity in dynamic ZIFs (dynaZIFs). Specifically, we isolated multiple functionality-locked phases, ZIF-78-lt, -ht1, and -ht2, by activation at 50, 160, and 210 °C, respectively. We observed multiple-level locking through gas adsorption and powder X-ray diffraction. We uncovered an SSL mechanism dominated by linker-linker π-π interactions that transit to C-H···O hydrogen bonds with binding energies increasing from -0.64 to -2.77 and -5.72 kcal mol-1, respectively, as evidenced by single-crystal X-ray diffraction and density functional theory calculations. Among them, ZIF-78-ht1 exhibits the highest CO2 capture capacity (up to 18.6 mmol g-1) and CH4 purification productivity (up to 7.6 mmol g-1) at 298 K and 30 bar. These findings provide molecular and energetic insights into leveraging framework flexibility through the SSL mechanism to optimize porous materials' separation performance.
Collapse
Affiliation(s)
- Tongtong Xu
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Wentao Jiang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yu Tao
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Mahmoud Abdellatief
- Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME), Allan 19252, Jordan
| | - Kyle E Cordova
- Integrated Materials Systems (iMS) Research Unit, Advanced Research Center, Royal Scientific Society, Amman 11941, Jordan
| | - Yue-Biao Zhang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
7
|
Lococciolo G, Gupta SK, Dechert S, Demeshko S, Duboc C, Atanasov M, Neese F, Meyer F. Oxygen-Donor Metalloligands Induce Slow Magnetization Relaxation in Zero Field for a Cobalt(II) Complex with {CoO 4} Motif. Inorg Chem 2024; 63:5652-5663. [PMID: 38470330 DOI: 10.1021/acs.inorgchem.4c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Most 3d metal-based single-molecule magnets (SMMs) use N-ligands or ligands with even softer donors to impart a particular coordination geometry and increase the zero-field splitting parameter |D|, while complexes with hard O-donor ligands showing slow magnetization relaxation are rare. Here, we report that a diamagnetic NiII complex of a tetradentate ligand featuring two N-heterocyclic carbene and two alkoxide-O donors, [LO,ONi], can serve as a {O,O'}-chelating metalloligand to give a trinuclear complex [(LO,ONi)Co(LO,ONi)](OTf)2 (2) with an elongated tetrahedral {CoIIO4} core, D = -74.3 cm-1, and a spin reversal barrier Ueff = 86.9 cm-1 in the absence of an external dc field. The influence of diamagnetic NiII on the electronic structure of the {CoO4} unit in comparison to [Co(OPh)4]2- (A) has been probed with multireference ab initio calculations. These reveal a contrapolarizing effect of the NiII, which forms stronger metal-alkoxide bonds than the central CoII, inducing a change in ligand field splitting and a 5-fold increase in the magnetic anisotropy in 2 compared to A, with an easy magnetization axis along the Ni-Co-Ni vector. This demonstrates a strategy to enhance the SMM properties of 3d metal complexes with hard O-donors by modulating the ligand field character via the coordination of diamagnetic ions and the benefit of robust metalloligands in that regard.
Collapse
Affiliation(s)
- Giuseppe Lococciolo
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Sandeep K Gupta
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Sebastian Dechert
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Carole Duboc
- Université Grenoble Alpes, CNRS UMR 5250, DCM, Grenoble F-38000, France
| | - Mihail Atanasov
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Akad. Georgi Bontchev Street 11, Sofia 1113, Bulgaria
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| |
Collapse
|
8
|
Jana M, Quiroz M, Darensbourg MY. A single carbon atom controls the geometry and reactivity of Co II(N 2S 2) complexes. Chem Commun (Camb) 2024; 60:1128-1131. [PMID: 38180490 DOI: 10.1039/d3cc05394f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Three- vs. two-carbon N-to-N connectors give rise to monomeric, tetrahedral N2S2Co(II) (μeff = 4.24 BM) or dimeric [(N2S2)Co(II)]2 (diamagnetic) complexes, respectively. Differences in the derivative products of the Lewis acid receivers, W0(CO)3 and W0(CO)4, illustrate nucleophilicity of the thiolate sulfur lone pairs in each case, as well as their structural control.
Collapse
Affiliation(s)
- Manish Jana
- Department of Chemistry, Texas A&M University, College Station, Texas-77843, USA.
| | - Manuel Quiroz
- Department of Chemistry, Texas A&M University, College Station, Texas-77843, USA.
| | | |
Collapse
|
9
|
Gupta SK, Rao SV, Demeshko S, Dechert S, Bill E, Atanasov M, Neese F, Meyer F. Air-stable four-coordinate cobalt(ii) single-ion magnets: experimental and ab initio ligand field analyses of correlations between dihedral angles and magnetic anisotropy. Chem Sci 2023; 14:6355-6374. [PMID: 37325133 PMCID: PMC10266464 DOI: 10.1039/d3sc00813d] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
For single-ion magnets (SIMs), understanding the effects of the local coordination environment and ligand field on magnetic anisotropy is key to controlling their magnetic properties. Here we present a series of tetracoordinate cobalt(ii) complexes of the general formula [FL2Co]X2 (where FL is a bidentate diamido ligand) whose electron-withdrawing -C6F5 substituents confer stability under ambient conditions. Depending on the cations X, these complexes adopt structures with greatly varying dihedral twist angle δ between the N-Co-N' chelate planes in the solid state (48.0 to 89.2°). AC and DC field magnetic susceptibility measurements show this to translate into very different magnetic properties, the axial zero-field splitting (ZFS) parameter D ranging from -69 cm-1 to -143 cm-1 with substantial or negligible rhombic component E, respectively. A close to orthogonal arrangement of the two N,N'-chelating σ- and π-donor ligands at the Co(ii) ion is found to raise the energy barrier for magnetic relaxation to above 400 K. Multireference ab initio methods were employed to describe the complexes' electronic structures, and the results were analyzed within the framework of ab initio ligand field theory to probe the nature of the metal-ligand bonding and spin-orbit coupling. A relationship between the energy gaps of the first few electronic transitions and the ZFS was established, and the ZFS was correlated with the dihedral angle δ as well as with the metal-ligand bonding variations, viz. the two angular overlap parameters eσ and eπs. These findings not only give rise to a Co(ii) SIM showing open hysteresis up to 3.5 K at a sweep rate of 30 Oe s-1, but they also provide design guidelines for Co(ii) complexes with favorable SIM signatures or even switchable magnetic relaxation properties.
Collapse
Affiliation(s)
- Sandeep K Gupta
- Institut für Anorganische Chemie, Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Shashank V Rao
- Max Planck Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Sebastian Dechert
- Institut für Anorganische Chemie, Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 45470 Mülheim an der Ruhr Germany
| | - Mihail Atanasov
- Max Planck Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences Akad. Georgi Bontchev Street 11 1113 Sofia Bulgaria
| | - Frank Neese
- Max Planck Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
10
|
Gupta S, Nielsen HH, Thiel AM, Klahn EA, Feng E, Cao HB, Hansen TC, Lelièvre-Berna E, Gukasov A, Kibalin I, Dechert S, Demeshko S, Overgaard J, Meyer F. Multi-Technique Experimental Benchmarking of the Local Magnetic Anisotropy of a Cobalt(II) Single-Ion Magnet. JACS AU 2023; 3:429-440. [PMID: 36873706 PMCID: PMC9975825 DOI: 10.1021/jacsau.2c00575] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
A comprehensive understanding of the ligand field and its influence on the degeneracy and population of d-orbitals in a specific coordination environment are crucial for the rational design and enhancement of magnetic anisotropy of single-ion magnets (SIMs). Herein, we report the synthesis and comprehensive magnetic characterization of a highly anisotropic CoII SIM, [L2Co](TBA)2 (L is an N,N'-chelating oxanilido ligand), that is stable under ambient conditions. Dynamic magnetization measurements show that this SIM exhibits a large energy barrier to spin reversal U eff > 300 K and magnetic blocking up to 3.5 K, and the property is retained in a frozen solution. Low-temperature single-crystal synchrotron X-ray diffraction used to determine the experimental electron density gave access to Co d-orbital populations and a derived U eff, 261 cm-1, when the coupling between the d x 2 - y 2 and dxy orbitals is taken into account, in very good agreement with ab initio calculations and superconducting quantum interference device results. Powder and single-crystal polarized neutron diffraction (PNPD, PND) have been used to quantify the magnetic anisotropy via the atomic susceptibility tensor, revealing that the easy axis of magnetization is pointing along the N-Co-N' bisectors of the N,N'-chelating ligands (3.4° offset), close to the molecular axis, in good agreement with complete active space self-consistent field/N-electron valence perturbation theory to second order ab initio calculations. This study provides benchmarking for two methods, PNPD and single-crystal PND, on the same 3d SIM, and key benchmarking for current theoretical methods to determine local magnetic anisotropy parameters.
Collapse
Affiliation(s)
- Sandeep
K. Gupta
- Universität
Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077Göttingen, Germany
| | - Hannah H. Nielsen
- Department
of Chemistry, Aarhus University, Langelandsgade 140, DK-8000Aarhus C, Denmark
| | - Andreas M. Thiel
- Department
of Chemistry, Aarhus University, Langelandsgade 140, DK-8000Aarhus C, Denmark
| | - Emil A. Klahn
- Department
of Chemistry, Aarhus University, Langelandsgade 140, DK-8000Aarhus C, Denmark
| | - Erxi Feng
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee37831, United States
| | - Huibo B. Cao
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee37831, United States
| | - Thomas C. Hansen
- Institut
Laue-Langevin (ILL), 71 Avenue des Martyrs, 38042Grenoble, France
| | | | - Arsen Gukasov
- Laboratoire
Léon Brillouin (LLB), CEA CE de Saclay, Gif sur Yvette91191, France
| | - Iurii Kibalin
- Laboratoire
Léon Brillouin (LLB), CEA CE de Saclay, Gif sur Yvette91191, France
| | - Sebastian Dechert
- Universität
Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077Göttingen, Germany
| | - Serhiy Demeshko
- Universität
Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077Göttingen, Germany
| | - Jacob Overgaard
- Department
of Chemistry, Aarhus University, Langelandsgade 140, DK-8000Aarhus C, Denmark
| | - Franc Meyer
- Universität
Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077Göttingen, Germany
- Universität
Göttingen, International Center for Advanced Studies of Energy
Conversion (ICASEC), Tammannstraße 6, D-37077Göttingen, Germany
| |
Collapse
|
11
|
Lüert D, Legendre CM, Herbst‐Irmer R, Stalke D. Alkali Metal Based Triimidosulfite Cages as Versatile Precursors for Single-Molecule Magnets. Chemistry 2022; 28:e202104470. [PMID: 35040528 PMCID: PMC9304269 DOI: 10.1002/chem.202104470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/28/2022]
Abstract
Based on the potassium [{S(tBuN)2 (tBuNH)}2 K3 (tmeda)-K3 {(HNtBu)(NtBu)2 S}2 ] (1) and sodium precursors [S(tBuN)3 (thf)3 -Na3 SNa3 (thf)3 (NtBu)3 S] (2), [S(tBuN)3 (thf)3 Na3 {(HNtBu)(NtBu)2 S}] (3) and [(tmeda)3 S-{Na3 (NtBu)3 S}2 ] (4) the syntheses and magnetic properties of three mixed metal triimidosulfite based alkali-lanthanide-metal-cages [(tBuNH)Dy{K(0.5tmeda)}2 {(NtBu)3 S}2 ]n (5) and [ClLn{Na(thf)}2 {(NtBu)3 S}2 ] with Ln=Dy (6), Er (7) are reported. The corresponding potassium (1) and sodium (2-4) based cages are characterized through XRD and NMR experiments. Preventing lithium chloride co-complexation led to a significant increase of SMM performance to previously reported sulfur-nitrogen ligands. The subsequent DyIII -complexes 5 and 6 display slow relaxation of magnetization at zero field, with relaxation barriers U=77.0 cm-1 for 5, 512.9 and 316.3 cm-1 for 6, respectively. Significantly, the latter complex 6 also exhibits a butterfly-shaped hysteresis up to 7 K.
Collapse
Affiliation(s)
- Daniel Lüert
- Institut für Anorganische ChemieGeorg-August-University GöttingenTammannstraße 437077GöttingenGermany
| | - Christina M. Legendre
- Institut für Anorganische ChemieGeorg-August-University GöttingenTammannstraße 437077GöttingenGermany
| | - Regine Herbst‐Irmer
- Institut für Anorganische ChemieGeorg-August-University GöttingenTammannstraße 437077GöttingenGermany
| | - Dietmar Stalke
- Institut für Anorganische ChemieGeorg-August-University GöttingenTammannstraße 437077GöttingenGermany
| |
Collapse
|
12
|
Blackaby WJM, Harriman KLM, Greer SM, Folli A, Hill S, Krewald V, Mahon MF, Murphy DM, Murugesu M, Richards E, Suturina E, Whittlesey MK. Extreme g-Tensor Anisotropy and Its Insensitivity to Structural Distortions in a Family of Linear Two-Coordinate Ni(I) Bis-N-heterocyclic Carbene Complexes. Inorg Chem 2022; 61:1308-1315. [PMID: 35005902 DOI: 10.1021/acs.inorgchem.1c02413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a new series of homoleptic Ni(I) bis-N-heterocyclic carbene complexes with a range of torsion angles between the two ligands from 68° to 90°. Electron paramagnetic resonance measurements revealed a strongly anisotropic g-tensor in all complexes with a small variation in g∥ ∼ 5.7-5.9 and g⊥ ∼ 0.6. The energy of the first excited state identified by variable-field far-infrared magnetic spectroscopy and SOC-CASSCF/NEVPT2 calculations is in the range 270-650 cm-1. Magnetic relaxation measured by alternating current susceptibility up to 10 K is dominated by Raman and direct processes. Ab initio ligand-field analysis reveals that a torsion angle of <90° causes the splitting between doubly occupied dxz and dyz orbitals, which has little effect on the magnetic properties, while the temperature dependence of the magnetic relaxation appears to have no correlation with the torsion angle.
Collapse
Affiliation(s)
| | - Katie L M Harriman
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Samuel M Greer
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States.,Department of Chemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Andrea Folli
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K
| | - Stephen Hill
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States.,Department of Physics, Florida State University, Tallahassee, Florida 32306, United States
| | - Vera Krewald
- Theoretical Chemistry, TU Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany
| | - Mary F Mahon
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Damien M Murphy
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Emma Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K
| | - Elizaveta Suturina
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | | |
Collapse
|
13
|
Juráková J, Midlikova J, Hrubý J, Kliuikov A, Santana VT, Pavlik J, Moncol J, Cizmar E, Orlita M, Mohelsky I, Neugebauer P, Gentili D, Cavallini M, Salitros I. Pentacoordinate Cobalt(II) Single Ion Magnets with Pendant Alkyl Chains: Shall We Go for Chloride or Bromide? Inorg Chem Front 2022. [DOI: 10.1039/d1qi01350e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four pentacoordinate complexes 1-4 of the type [Co(L1)X2] and [Co(L2)X2] (where L1=2,6-bis(1-octyl-1H-benzimidazol-2-yl)pyridine for 1 and 2, L2=2,6-bis(1-dodecyl-1H-benzimidazol -2-yl)-pyridine for 3 and 4; X = Cl- for 1 and 3, X...
Collapse
|
14
|
Shao D, Moorthy S, Zhou Y, Wu ST, Zhu JY, Yang J, Wu D, Tian Z, Singh SKK. Field-induced slow magnetic relaxation behaviours in binuclear cobalt(II) metallocycle and exchange-coupled cluster. Dalton Trans 2022; 51:9357-9368. [DOI: 10.1039/d2dt01620f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Precise control of structures and magnetic properties of a molecular material constitutes an important challenge to realize the tailor-made magnetic function. Herein, we reported that the ligand-directed coordination self-assembly of...
Collapse
|
15
|
Jung J, Legendre CM, Demeshko S, Herbst-Irmer R, Stalke D. Imidosulfonate scorpionate ligands in lanthanide single-molecule magnet design: slow magnetic relaxation and butterfly hysteresis in [ClDy{Ph 2PCH 2S(N tBu) 3} 2]. Dalton Trans 2021; 50:17194-17201. [PMID: 34783813 DOI: 10.1039/d1dt03555j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-molecule magnets (SMMs) harbour vast opportunities for potential pioneering applications upon optimization like big data storage and quantum computing. Lanthanides were found to be highly suitable candidates in the design of such molecules, as they intrinsically hold a large unquenched orbital momentum and a strong spin-orbit coupling, warranting a high magnetic anisotropy. An indispensable element in successfully tailoring SMMs is the ligand design. Polyimido sulfur ligands offer a promising choice because the polar S+-N--bond facilitates both electronic and geometric adaptability to various f-metals. In particular, the acute N-Ln-N bite angle generates advantageous magnetic properties. The [Ph2PCH2S(NtBu)3]- anion, introduced from [(thf)3K{Ph2PCH2S(NtBu)3}] (2) to a series of complexes [ClLn{Ph2PCH2S(NtBu)3}2] with Ln = Tb (3a), Dy (3b), Er (3c), Ho (3d), and Lu (3e), provides tripodal shielding of the metal's hemisphere as well as a side-arm donation of a soft phosphorus atom. For the Tb and Er complexes 3a and 3d, slow magnetic relaxation (Ueff = 235 and 34.5 cm-1, respectively) was only observed under an applied dc field. The dysprosium congener 3b, however, is a true SMM with relaxation at zero field (Ueff = 66 cm-1) and showing a butterfly hysteresis close to 3.5 K. Upon magnetic dilution with the diamagnetic and isostructural lutetium complex 3e or application of a magnetic field, the energy barrier to spin reversal is increased to 74 cm-1.
Collapse
Affiliation(s)
- Jochen Jung
- Georg-August Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany.
| | - Christina M Legendre
- Georg-August Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany.
| | - Serhiy Demeshko
- Georg-August Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany.
| | - Regine Herbst-Irmer
- Georg-August Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany.
| | - Dietmar Stalke
- Georg-August Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany.
| |
Collapse
|
16
|
Legendre CM, Lüert D, Herbst-Irmer R, Stalke D. Benchmarking magnetic and spectroscopic properties on highly stable 3d metal complexes with tuneable bis(benzoxazol-2-yl)methanide ligands. Dalton Trans 2021; 50:16810-16818. [PMID: 34766963 DOI: 10.1039/d1dt03230e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two series a and b of 3d metal based complexes 1-4 [MII{(4-R-NCOC6H4)2CH}2], (with M = Mn (1), Fe (2), Co (3), Ni (4) and R = H (a) or Me (b)) were synthesised and structurally characterized. The complexes were found to crystallize differently depending on the dication ionic radius and the ligand substitution. All complexes showed remarkable X-ray diffraction resolution that will allow further advanced diffraction experiments. Subsequently, their spectroscopic and magnetic properties were analysed. Complexes 3a and 3b notably show slow magnetic relaxation of their magnetization and represent simple model systems relaxing through a phonon-bottleneck process (3a) or as a field-induced single-molecule magnet (3b, Ueff = 45.0 cm-1). Remarkably, the magnetic anisotropy in the manganese complex 1b results in induced slow magnetic relaxation. The influence of the dual 4-methylation of the ligands was investigated and found to generate important variations in the physical features of the corresponding complexes. Accessible via one-pot synthesis, these are highly robust against oxidation and moisture. Through smart ligand engineering, they represent stable and tuneable compounds for benchmarking purposes through standard and less-standard characterization methods.
Collapse
Affiliation(s)
- Christina M Legendre
- Institute for Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.
| | - Daniel Lüert
- Institute for Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.
| | - Regine Herbst-Irmer
- Institute for Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.
| | - Dietmar Stalke
- Institute for Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.
| |
Collapse
|
17
|
Legendre CM, Herbst-Irmer R, Stalke D. Enhancing Steric Hindrance via Ligand Design in Dysprosium Complexes: From Induced Slow Relaxation to Zero-Field Single-Molecule Magnet Properties. Inorg Chem 2021; 60:13982-13989. [PMID: 34450008 DOI: 10.1021/acs.inorgchem.1c00973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and magnetic characterization of three novel Dy compounds, [Dy{PPh2S(NtBu)2}2(μ-Cl2)Li(THF)2] (1), [Dy{PhS(NtBu)2}2(μ-Cl2)Li(THF)2] (2), and [Dy{MeS(NtBu)3}2(μ-Cl2)Li(THF)2] (3), based on the sulfur-nitrogen ligands RS(NtBu)x- (where R = PPh2, x = 2 for (1); R = Ph, x = 2 for (2); and R = Me, x = 3 for (3)) are reported. They represent rare examples of lanthanide-based complexes containing sulfur-nitrogen ligands, whose suitability to enhance the magnetic anisotropy in 3d metals was only recently established. Changes in the ligand field environment drastically affect the magnetic properties, with compounds 1 and 2 displaying field-induced single-molecule magnet (SMM) behavior, while compound 3 shows slow relaxation at zero field. These trends strongly suggest that ligand engineering strategies toward linear dysprosium complexes, similar to those for dysprosocenium complexes, should enhance the SMM performances of SN-based lanthanide compounds.
Collapse
Affiliation(s)
- Christina M Legendre
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| |
Collapse
|